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Abstract
Conformal higher spin (HS) gravity is a HS extension of Weyl gravity and is
a family of local HS theories, which was put forward by Segal and Tseytlin.
We propose a manifestly covariant and coordinate-independent action for
these theories. The result is based on an interplay between HS symmetries
and deformation quantization: a locally equivalent but manifestly background-
independent reformulation, known as the parent system, of the off-shell mul-
tiplet of conformal HS fields (Fradkin–Tseytlin fields) can be interpreted in
terms of Fedosov deformation quantization of the underlying cotangent bundle.
This brings into the game the invariant quantum trace, induced by the Feigin–
Felder–Shoikhet cocycle of Weyl algebra, which extends Segal’s action into
a gauge invariant and globally well-defined action functional on the space of
configurations of the parent system. The same action can be understood within
the worldline approach as a correlation function in the topological quantum
mechanics on the circle.
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1. Introduction

There are very few examples of (covariant) actions for higher spin (HS) gravities at present.
(1) In three dimensions, there is a class of topological HS theories [1–8], which encom-
passes massless, partially-massless and conformal (HS) fields. The actions for these theor-
ies are simply the Chern–Simons action for various Lie algebras that can be thought of as
the HS extensions of Poincaré, (anti-)de Sitter or conformal algebras. (2) In the light-cone
gauge, Chiral HS gravity in flat space admits a very simple action [9–13]. The theory has two
contractions [14], which can be understood as HS extensions of self-dual Yang–Mills and of
self-dual gravity theories, and have simple covariant actions [15]. Some recent progress has
been made towards uplifting Chiral theory to twistor space [16–19], where the Chern–Simons
action [17] captures correctly the cubic interactions both in flat and (A)dS spaces. (3) IKKT
model for a HS algebra [20–22] is an example of a non-commutative field theory with HS
fields in the classical limit. (4) The last but not the least is the class of conformal higher spin
(CHS) gravities [23–25], which is the subject of this paper.

Conformal higher spin gravities (CHS gravity) are HS extensions of conformal gravity.
In four dimensions, it is an extension of Weyl gravity. More generally, conformal gravit-
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ies are theories of a metric gµν(x) that are invariant under diffeomorphisms and local Weyl
rescalings

gµν(x)→ g ′
µν(x) = Ω2(x)gµν(x) . (1.1)

They exist in even dimensions n⩾4 and the cases of n= 2 and n= 3 are somewhat spe-
cial, the latter one admitting a Chern–Simons formulation [26, 27], which was discussed
above. In n= 4 dimensions there is a unique action, the Weyl action, while for n> 4
there is an ambiguity growing with dimension in what conformal gravity is, which is
related to the growing number of conformal invariants (see e.g. [28–30] for explicit expres-
sions in 6 and 8 dimensions, and also [31] for the recent progress concerning the general
classification).

It is remarkable that diffeomorphisms and Weyl rescalings can be extended to an infinite-
dimensional algebra of symmetries that acts on an infinite multiplet of CHS fields [24, 32],
which are also known as Fradkin–Tseytlin fields [33]. The multiplet contains fields with arbit-
rarily high spin. CHS gravities are theories for this multiplet and there seems to be only one
such theory for every multiplet in even dimensions n= 2p, p⩾2. Two seemingly different
constructions were proposed: Tseytlin’s that is based on the effective action approach [23]
(see also [25]); Segal’s that is tight to a worldline model and deformation quantization [24].
Both of these approaches are eventually closely related to each other and prove the existence
of CHS gravities.

Let us comment on possible relevance of CHS gravity in applications, starting with its
spin-2. Weyl gravity represents one of the contributions to the conformal anomaly, i.e. to
an anomalous piece of the effective action of a conformal field theory in the gravita-
tional background. It also appears as an anomalous contribution to the holographic effect-
ive action [34]. Similar ideas can be applied to CHS gravity [23, 35]. At the same time
Weyl gravity action gives an example of a conformal invariant while its equations of
motion give an example of a conformally invariant differential operator, which are notori-
ously difficult to construct and which are of substantial interest in conformal field the-
ory and conformal geometry. Likewise, CHS gravity provides a HS extension of these
operators, see e.g. [36, 37]. Another potentially interesting application of CHS gravity
is that massless HS gravity could be recovered from CHS one just like Einstein grav-
ity with negative cosmological constant can be identified as a subsector of the Weyl
gravity [38].

One aspect of CHS gravity and, more generally, of ‘higher spin geometry’ we would like
to improve on is to propose a manifestly covariant and both coordinate- and background-
independent construction for CHS gravities, including the action principle. Having such a for-
mulation is important for any extension of gravity and should facilitate the study of these
theories in the future, e.g. propagation of CHS fields on gravitational backgrounds [39–45].

The problem of covariantization of CHS gravity leads to, roughly speaking, two problems:
(i) what is the proper HS analog of the covariant derivative ∇? (ii) what is the proper HS ana-
log of

√
g to be able to integrate? None of these objects makes sense a priori when HS gauge

fields are present. Indeed, HS gauge transformations, of which the spin-two symmetries (dif-
feomorphisms and Weyl rescalings in our case) form a small subset, mix spins and derivatives
and, hence, neither of ∇ and

√
g transform in a meaningful way. In a broader sense, the real

question is ‘what is higher spin geometry?’.
A key step to the solution was given already in [24]. Spin-two (low-spin) symmetries such

as diffeomorphisms, Weyl and Yang–Mills symmetries, can be represented by operators of
the first order at most (in spacetime derivatives). Higher spin transformations bring in higher
derivatives. Therefore, the natural language is that of differential operators. The latter can also

3



J. Phys. A: Math. Theor. 56 (2023) 385402 T Basile et al

be represented locally as the Moyal–Weyl star-product algebra. The action of CHS gravity is
then a specific invariant functional on the Moyal–Weyl algebra, which takes advantage of the
invariant trace Tr(•).

Moyal–Weyl star-product is defined in terms of Darboux coordinates and does not sup-
port diffeomorphism symmetry6. It known how to fix this problem within the framework of
deformation quantization—one needs to resort to the Fedosov approach [46], which is based
on picking a background connection. From the gauge field theory perspective, resorting to
Fedosov quantization amounts to the so-called parent reformulation of the system. In the case
of the Segal system, the corresponding parent reformulation is known [47] (see also [48, 49];
strictly speaking we employ a certain partially gauge-fixed version of this formulation) and
its equations of motion are those of the Fedosov-like quantization of the corresponding con-
strained system defined on the cotangent bundle of the space-time manifold. The crucial point
of this parent system is that it is background-independent because the Fedosov-like connection
becomes a genuine gauge field and hence no background fields are needed in the construction.
As a result, we get an off-shell gauge theory that contains the CHS multiplet together with all
the necessary auxiliary and pure gauge fields that encode derivatives thereof in a HS covariant
way.

The last ingredient is Feigin–Felder–Shoikhet cocycle [50] that allows one to define
the invariant trace Tr(•) on the Fedosov-quantized symplectic manifold. This cocycle is a
by-product of Shoikhet–Tsygan–Kontsevich formality [51, 52]. As a result, Segal’s action,
i.e. CHS gravity action in Darboux coordinates, is a particular gauge of our action and one
can choose other gauges that make various aspects manifest, e.g. one can pursue metric-like
or frame-like approaches.

It was shown in [53] that the Feigin–Felder–Shoikhet cocycle can be represented as a spe-
cific correlator in a topological quantum mechanics of a free particle on the circle. At the same
time, Segal’s action also admits a worldline formulation [24, 54, 55]. Therefore, it should not
be surprising that our covariant CHS gravity action can be represented as a correlation function
in a worldline model.

The outline of the paper is as follows. In section 2, we introduce CHS fields, Fradkin–
Tseytlin fields, and review the two approaches to CHS gravities. In section 3, we introduce
the parent extension of the Segal off-shell system and present our main result—a covariant
action for CHS gravities. In section 4, we discuss possible gauge conditions which allow us to
reformulate the action in terms of the independent and unconstrained fields. We also elaborate
on the explicit relation between frame-like and metric-like formulations of the system, which
are derived from the parent formulation through suitable gauge conditions. We end up with
some conclusions and a discussion.

2. CHS gravity

We begin by outlining the problem of CHS gravity and a closely related issue of a HS exten-
sion of conformal geometry. Next, we review two approaches, Tseytlin’s and Segal’s, to CHS
gravity. At the end, we discuss the relation between the two. While each of the approaches
gives a ‘proof of concept’ for the existence of theory, we will see that obtaining a covariant
and globally well-defined form of it may not be straightforward, and will propose a solution
to this problem in section 3.

6 In the sense that its very definition on a symplectic manifold relies on a choice of coordinates—called Darboux
coordinates—wherein the symplectic form has constant components, and hence the star-product is defined only loc-
ally.
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2.1. CHS fields

As previously stated, CHS gravity is an extension of conformal, or Weyl, gravity, whose spec-
trum contains fields of all integer spins. One way to describe Weyl gravity is in terms of an
equivalence class of conformal metrics, i.e. a rank-2 symmetric tensor gµν , subject to the gauge
transformations

δξ,σg
µν = Lξ g

µν + 2σgµν , (2.1)

where ξ ≡ ξµ(x)∂µ is a vector field that generates infinitesimal diffeomorphism and σ(x) is
an arbitrary function parameterizing infinitesimal Weyl rescalings (1.1).

CHS fields in the metric-like approach [33] are a natural generalization of the above gauge
symmetry to totally-symmetric tensors of arbitrary ranks s> 2. More precisely, CHS fields can
be described by symmetric tensors Φµ1...µs with s ∈ N. The theory turns out to be uniquely
fixed by its (HS) non-abelian gauge symmetries whose exact form can be read off from a
simple matter coupling and is reviewed in section 2.3. To envisage the theory, it can be helpful
to look for natural gauge symmetries for Φµ1...µs . To this effect, it is important to isolate the
spin-two field gµν and treat it as a background. A HS extension of (2.1) can be looked for,
starting from

δξ,σΦ
µ1...µs = LξΦ

µ1...µs +wsσΦ
µ1...µs +∇(µ1ξµ2...µs) + g(µ1µ2σµ3...µs) + · · · . (2.2)

Here, the first term, the Lie derivative, declares Φµ1...µs to transform as a tensor under dif-
feomorphisms and the second term assigns a certain Weyl weight ws to it; the third term is a
generalization of diffeomorphisms to HSs (at this point the spin-two background is important
and we use Lξ gµν =∇µξν +∇νξµ to propose a HS extension); the fourth term represents a
HS Weyl transformation, but again over the spin-two background; the dots . . . at the end are
meant as a reminder that this expression needs to be completed with terms that are nonlinear
in HS fields themselves.

Upon linearization around flat space, the diffeomorphisms get reduced to the Poincaré sym-
metries and the HS gauge transformations become7

δξ,σΦa1...as = ∂(a1ξa2...as) + η(a1a2σa3...as) , (2.3)

where ηab is the flat metric8. A free action for such fields is simply given by9

Ss[Φ] =
ˆ
dnxΦa1...as Pb1...bsa1...as(∂)□

s+ n−4
2 Φb1...bs , (2.4)

where Pb1...bsa1...as(∂) is a traceless and transverse projector, thereby ensuring the invariance of
this action under the linear gauge symmetries (2.3). For example, for s= 1 we have Pba =
δba − ∂a∂

b/□. These projectors were initially derived in four dimensions in [63, 64] and in
arbitrary dimensions in [24], and have found applications in e.g. [25, 55, 65, 66]. The right
power of □ in (2.4) is to ensure locality of the action.

Upon integrating by part, this action can be brought to the form

Ss[Φ] = (−1)s
ˆ
dnxCa1...as,b1...bs □ n−4

2 Ca1...as,b1...bs , (2.5)

7 This type of conformal gauge fields was first introduced in 4d [56] as sources to traceless conserved tensors.
8 We use Greek indices µ,ν, . . . to denote (co)tangent indices on a (generally) curved manifold and Latin indices
a,b, . . . refer to flat space or fiber indices.
9 Generalizations to supersymmetric cases [33, 42, 44, 45, 57–61] and mixed-symmetry fields [62] are also possible,
but will be studied elsewhere. In the present paper, we deal with the most basic example of the bosonic CHS gravity
with only totally symmetric fields in the spectrum.
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where

Ca1...as,b1...bs := ∂a1 . . .∂asΦb1...bs + permutations− traces, (2.6)

is the (linearized) spin-sWeyl tensor, where the permutations and traces in the above formula
implement the projection onto the traceless rectangular Young diagram of length s. The
tracelessness of the spin-sWeyl tensor ensures its invariance under the spin-sWeyl transform-
ations. For spin-2, this reproduces the usual linearized Weyl tensor and hence the linearized
action of Weyl gravity. For a proof of the conformal invariance of the linearized action, see
[24, section 10].

One can proceed starting from the free actions (2.4) or (2.5) and look for cubic and higher
interaction vertices while deforming the free gauge symmetry (2.3) accordingly, which is often
called Noether procedure (or gauging in supergravity). While this approach should, in prin-
ciple, allow one to address the problem of constructing CHS gravity in a systematic way, it is
notoriously difficult in practice, see [43–45, 57, 58, 67] for some results in this direction.

In general, the introduction of interactions is strongly constrained by the requirement of
Weyl invariance, and in particular, a simple dimensional argument shows that all possible ver-
tices compatible with conformal symmetry and involving a finite number of fields will contain
a finite number of derivatives, and hence the resulting theory will be local. Indeed, within the
perturbative expansion over flat space the conformal dimension of Φa1...as is (2− s) and an
interaction vertex for k fields with spins si schematically reads

Sk ∼
ˆ
dnx(∂)pΦ(s1) . . .Φ(sk) . (2.7)

Therefore, it has to have a fixed number of derivatives p= n+
∑

i (si− 2). Unfortunately, the
price to pay for locality is that CHS gravity is not unitary (as could be expected from the
fact that its kinetic terms are of higher derivative type), which is true already for its spin-
two subsector, Weyl gravity. Nevertheless, it is an interesting example of HS gravity that has
applications within AdS/CFT duality [34, 68–74] and conformal geometry, since it produces
many conformally invariant operators. The S-matrix has good chances to be 1 due to the HS
symmetry [75, 76] and, hence, the theory may turn out to be unitary/trivial, which is a sign of
integrability.

Leaving aside the question of classifying possible CHS gravities, there are two concise
recipes to construct specific examples of such theories that we are going to review now. These
are Tseytlin’s approach [23] that is based on the idea of effective action and Segal’s approach
[24] that draws inspiration from studying the quantized particle model coupled to background
HS fields.

2.2. Tseytlin’s approach: induced action

The approach due to Tseytlin [23] (see also [25] for a more elaborated exposition) rests on the
idea of induced actions, already discussed by Sakharov [77] for gravity. It consists in consid-
ering a (complex) conformal scalar field ϕ with (HS) currents Ja1...as coupled to a background
of CHS fields, i.e.

Sh[ϕ] =
ˆ
dnx

(
ϕ∗□ϕ+

∞∑
s=0

Ja1...as h
a1...as

)
=

ˆ
dnxϕ∗

(
□+ Ĥ

)
ϕ. (2.8)

Here, Ja1...as are bilinear in the scalar field ϕ and read schematically

Ja1...as = ϕ∗∂a1 . . .∂asϕ + . . . , (2.9)

6
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where . . . complete it to a traceless (can be achieved off-shell) and conserved (on-shell) tensor.
The fields ha1...as can be treated as sources for these currents or, and this is an interpretation
we need, as background fields. In the last step, we took the liberty to integrate by parts so
that no derivatives act on ϕ∗ and all the derivatives involved in the definition of the currents
are distributed over ϕ and ha1...as . As a result of this resummation, Ĥ is the (higher order)
differential operator acting on ϕ

Ĥ=
∑
k

Ĥa1...ak(h)∂a1 . . .∂as , (2.10)

whose coefficients depend on the original sources ha1...as . Let us note for the future that Ĥ=
Ĥ(x,∂) is, basically, a generic formally Hermitian10 differential operator. Since the HS currents
are conserved and traceless the background fields ha1...as enjoy the same symmetry as (2.3).
It is important to stress that the simple Noether coupling (2.8) is not off-shell gauge invariant
under (2.3) and, as usual, requires higher order corrections to the gauge symmetry and to
the Noether coupling (so-called Seagull terms). In the simplest low spin cases, the complete
coupling for the spin-one background field Aµ originates fromDµϕ

∗DµϕwithDµ = ∂µ + iAµ

and for the spin-two background, i.e. the conformal metric itself, the stress-tensor coupling
Tabhab has to be appended with infinitely many terms that can be resummed into the action of
the conformally coupled scalar field

S[ϕ] =
ˆ
dnx

√
g
(
gµν∂µϕ

∗∂νϕ + (n−2)
4(n−1)ϕ

∗Rϕ
)
. (2.11)

Suppose we are given an action Sh[ϕ] for the conformal scalar field ϕ coupled to an arbitrary
CHS background (collectively denoted by h). One can then compute the effective action

e−W[h] =

ˆ
Dϕ∗Dϕe−Sh[ϕ] , (2.12)

using the heat kernel method

W[h] =−
ˆ ∞

ϵ

dt
t Tre

−tF̂ , F̂ :=□+ Ĥ , (2.13)

where ε is a cut-off. Using the heat kernel expansion, the effective action can be written as

W[h] = (poles in ϵ)+ an/2[F̂] logϵ+(series in ϵ) , (2.14)

where the Seeley–DeWitt coefficient an/2[F̂] of the operator F̂= F̂[h] appears only in even
dimension n. The pole part represents the usual UV divergences. The coefficient an/2 is a local
functional of the CHS fields h and is Weyl invariant (see e.g. [25, section 3] for more details
and [55] for a recent discussion). Let us stress that we restrict ourselves to field configurations
where only finite number of component fields from h are nonzero and hence the order of Ĥ is
finite as well (for more details on the heat kernel of higher-order operators see e.g. [78, 79]).

The Seeley–DeWitt coefficient an/2[F̂] in (2.14) has all the desired properties that onewould
ask of an action for CHS gravity. In other words, the CHS gravity action in Tseytlin’s approach
is defined as the logarithmically divergent piece of the effective action of a scalar field con-
formally coupled to a background of CHS fields. It is also well-known that for the low spin

10 By ‘formally’ Hermitian here we simply mean that F† = F, where f(x)† = f∗(x), ∂†
a =−∂a and † is an anti-

involution, (FG)† = G†F†.
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background fields Aµ and gµν in, say n= 4, we have [41, section 3]

a(n=4)/2 =
1

(4π)2

ˆ
d4x

√
g
(
− 1

12FµνF
µν + 1

120Cµν,λρC
µν,λρ

)
, (2.15)

where Cµν,λρ is the Weyl tensor, and the topological Euler term was dropped. Therefore, it
should not be too surprising that an/2 receives well-defined, local HS corrections as long as we

switch on the HS background fields. One subtlety can be that F̂ is a higher derivative operator
and the heat kernel techniques for general higher derivative operators are yet to be developed
(see e.g. [80, 81] for recent works on heat kernels for higher-order operators). The induced
action approach should be generalizable to mixed-symmetry and supersymmetric cases. In
particular, it has recently been advanced to N = 1 supersymmetric CHS case [45, 61] and the
quadratic part of the action has been obtained via the induced action technique [61].

2.3. Segal’s approach: particle in a HS background

Suppose we are given the quantized phase-space, i.e. an associative algebra of functions on
the phase space R2n with linear coordinates xµ, pν , subject to {xµ,pν}= δµν . Here and in
what follows we employ the language of Weyl symbols, i.e. identify the operator algebra of
polynomial functions p with coefficients in smooth functions in x tensored with R[[ℏ]] (formal
power series in ℏ) and with the product being Moyal–Weyl star-product,

( f ⋆ g)(x,p) = f(x,p) exp
[
ℏ
2

(
←
∂

∂xµ

→
∂

∂pµ
−

←
∂

∂pµ

→
∂

∂xµ

)]
g(x,p) , (2.16)

so that in particular, the commutation relations between the coordinates xµ and pν read

[xµ,pν ]⋆ = ℏδµν . (2.17)

This algebra admits an anti-involution defined by

x† = x , p† = p , ℏ† =−ℏ , (a ⋆ b)† = b† ⋆ a† . (2.18)

We also employ the standard representation of the algebra on functions in xµ tensored with
R[[ℏ]]. More precisely, any f(x,p) is sent to a differential operator f̂(x, ∂

∂x ) that is obtained by
employing the symmetric ordering. This gives a quantization map. Its inverse, sending operat-
ors to phase space functions is usually referred to as the symbol map. Under the quantization
map, the involution † is sent to the formal adjoint with respect to the standard inner product

〈ϕ,ψ〉=
ˆ
dnxϕ∗ψ . (2.19)

The above construction is invariant under general linear transformation of x complemented
by the conjugate transformations of p. In particular, ‘wave-functions’ ϕ, ψ are assumed to
be semi-densities for the inner product to be invariant under such transformations. Note that
more general diffeomorphisms cannot be naturally implemented in this framework since, for
instance, they do not preserve Moyal–Weyl star-product (2.16).

Let F(x,p) be a generic element of the algebra which we view as a first class constraint
(we do not explicitly indicate the ℏ dependency, having in mind that we work over R[[ℏ]]).
Assuming F Hermitian and polynomial in pa, one can easily write the free action of the asso-
ciated scalar field as

S[ϕ,F] = 〈ϕ, F̂ϕ〉 . (2.20)

In this action, we view F as a generating function for background fields, and ϕ = ϕ(x) as a
complex scalar field. Indeed, the relation to the previous section is that in the action (2.20) we

8
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can absorb □ into F̂=□+ Ĥ, i.e. ηµν pµpν is a (spin-two) background value for F and the
perturbations correspond to turning on a CHS background. In particular, it is more natural to
associate the Taylor coefficients of F when expanded in p

F=
∑
s

Fµ1...µs(x)pµ1 . . .pµs , (2.21)

with the background fields (recall that they can be obtained via a certain rearrangement of
ha1...as).

The advantage of the action (2.20) is that it is very easy to determine the full gauge sym-
metry that leaves it invariant. Indeed, it is obvious that it is invariant under the following infin-
itesimal gauge symmetries,

δξ,wF=
1
ℏ
[F, ξ]⋆ + {F,w}⋆ , (2.22a)

δξ,wϕ =−
(

1
ℏ ξ̂+ ŵ

)
ϕ, (2.22b)

where the gauge parameters ξ and w are Weyl symbols of the Hermitian operators: ξ̂† = ξ̂,
ŵ† = ŵ and where ‘hat’ denotes the quantization map. These symmetries have a natural inter-
pretation in terms of the Hamiltonian constrained system describing the underlying particle
model, see appendix A for details. An even more compact way to represent the same gauge
symmetry is to define u= ℏ−1ξ +w, which is neither Hermitian nor anti-Hermitian, and write

δuF= u† ⋆F+F ⋆ u , δuϕ =−ûϕ. (2.23)

In what follows we refer to the off-shell system (2.22a) with field F subject to the above gauge
symmetries as the off-shell Segal system. In other words, we drop the ϕ-part. The off-shell
Segal system defines a completion of (2.2) and also solves the problem raised in the previous
section, of how to couple matter fields to a HS background.

Let us comment on the background independence of the system. At first glance, the defin-
ition of the system does not involve any background fields and hence the system can be
considered as a gravity-type theory (for the moment defined at the off-shell level only).
Nevertheless, a more careful analysis shows that the star-product involved in the construc-
tion depends on a choice of Darboux coordinates. Although this background dependence is
not of a fundamental nature and can, in principle, be excluded by working with differential
operators as such, it is not clear if this does not lead to further complications. More geomet-
rically, what we are implicitly dealing with is a cotangent bundle over the spacetime manifold
X and it is known that one, at least, needs to fix an affine connection on X to define a concrete
star-product in a coordinate invariant way. As we are going to see in the next section, this
drawback can be cured by passing to a locally equivalent reformulation of the system.

By analyzing the component form of the transformation (2.22a), one finds that they gener-
alize gauge transformations of the conformal gravity and, at the same time, give a nonlinear
extension of the linearized gauge symmetries of the Fradkin–Tseytlin fields. Note however that
to see that the linearization of the above gauge symmetries indeed reproduces the Fradkin–
Tseytlin gauge transformations, one is to employ an intricate field redefinition, introduced
in [24] (see also [25, 47]). Let us give a few sketchy arguments supporting these statements.
First of all, we note that the above gauge transformations contain a subalgebra of diffeomorph-
isms and Weyl rescalings which act on the spin-2 component of F in a standard way, but at

9



J. Phys. A: Math. Theor. 56 (2023) 385402 T Basile et al

the same time affects other components of F. More precisely, consider transformations with
the parameters

ξ = ξµ(x)pµ , w= σ(x) . (2.24)

The commutator of two such transformations, with ui = 1
ℏ ξ

µ
i (x)pµ +σi(x) for i = 1,2, reads

as

[u1,u2]⋆ = 1
ℏ (ξ

µ
2 ∂µξ

ν
1 − ξµ1 ∂µξ

ν
2 )pν + ξµ2 ∂µσ1 − ξµ1 ∂µσ2 , (2.25)

and hence this subalgebra is isomorphic to the semidirect product of the algebra of dif-
feomorphisms (represented by vector fields) with the (abelian) algebra of Weyl rescalings.
However, this subalgebra is not represented in a canonical way on the p-Taylor coefficients of
F as one can see this already with the first even-spin components of the field F

F= D(x)+ 1
2 g

µν(x)pµpν + · · · , (2.26)

where notation gµν will justify itself immediately. Here we assume that the HS components
vanish otherwise there can be higher derivative contributions below. The subalgebra (2.24) of
the gauge transformations, which consists of diffeomorphisms and Weyl rescalings, acts as

δξ,σg
µν =−∂λξµgλν − ∂λξ

νgλµ + ξλ∂λg
µν + 2σgµν ≡ Lξ g

µν + 2σgµν , (2.27)

δξ,σD= ξµ∂µD+ 2σD− 1
2
ℏ2∂µ∂νξ

λ∂λg
µν − 1

2
ℏ2gµν∂µ∂νσ . (2.28)

We see that gµν transforms as a conformal metric should, but D has additional non-covariant
terms (the last two terms, proportional to ℏ2) that get D entangled with gµν . In principle, there
is a field-redefinition D→ D+Y(g) that allows one to eliminate such terms [24]. However, it
is, generally, difficult to find one and it becomes more and more complicated to disentangle
transformations as we proceed to HSs. While some formulas, e.g. (2.25) and (2.27), indicate
that the diffeomorphism algebra is a part of the off-shell Segal system, others such as (2.16)
and (2.28) make it very difficult to see how it is realized on fields11. This is one of the problems
that the present paper is to solve: how to covariantize the Segal approach12.

Genuine HS gauge transformations (2.3) can be seen once we expand (2.22) over the back-
ground F(0) = 1

2 p
2 ≡ 1

2 η
µν pµpν . Indeed, for F= 1

2 p
2 + f, the linearized gauge transforma-

tions read

δξ,wf = 1
2ℏ [p

2, ξ]⋆ +
1
2 {p

2,w}⋆ , (2.29)

and for generic ξ and σ we find

δξ,wf(x;p) =−pµ∂µξ(x;p)+ p2σ(x;p)+ . . . , (2.30)

where . . . denotes corrections of order O(ℏ2) which are also responsible for mixing the fields
of different spins and for the non-covariance. When Taylor expanded in p the above formula
reproduces (2.3) to the leading order in ℏ. This way ξ and w represent higher spin (HS) diffeo-
morphisms and higher spin (HS) Weyl transformations.

To summarize, the algebra of diffeomorphisms and Weyl rescalings is obviously a part of
the gauge symmetries of the off-shell Segal system. In addition, the linearization over 1

2 p
2

does reproduce the HS transformations (2.3). Therefore, altogether we are in a possession of a

11 Retrospectively, this is consistent with the fact that we are dealing with symbols of differential operator, for which
it is known that only the principal part (coefficients of its term of highest order in derivatives) transforms as a totally
symmetric tensor (see e.g. [82] for more details on this approach in relation to higher spin gravity).
12 For the moment we only talk about the off-shell Segal system, whose covariantization is known [40, 47].

10
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certain completion of (2.2). Nevertheless, the diffeomorphisms and Weyl transformations are
not represented in the canonical way and the Taylor coefficients of F do not behave as tensors
under diffeomorphisms.

The off-shell Segal system can be expanded over any background, the simplest one being
1
2 p

2, which is also the one making (2.20) into the action of a conformal scalar field.
Given a fixed background solution, a natural question is to consider an algebra of its sym-

metries. By definition these are the leftovers of gauge symmetries that leave it intact:

u† ⋆ p2 + p2 ⋆ u= 0 . (2.31)

We also note that the symmetries (2.23) are reducible: δuF= 0 for u= i v ⋆F with v† = v.
Therefore, the symmetry algebra of the vacuum 1

2 p
2 is exactly the algebra of ‘higher symmet-

ries of Laplacian’ [24, 83–85], i.e. the quotient algebra of the symmetries modulo trivial ones.
At the same time, this algebra is the deformation quantization [85–87] of the coadjoint orbit
corresponding to the free scalar field in flat space, □ϕ = 0, as a representation of the con-
formal algebra so(n,2). This is an infinite-dimensional associative algebra hs(□ϕ) that can
also be obtained as a quotient of U(so(n,2)) by a certain two-sided ideal, known as the Joseph
ideal [88] (see also [89, 90] and references therein for further applications to the construction
of various higher algebras).

A simple generalization of this construction is to take the same scalar matter ϕ(x), but with
a different kinetic term, □kϕ, which are called higher order singletons [71]. Obviously, they
correspond to (p2)k within the Segal construction. The corresponding HS algebras hs(□kϕ)
are not isomorphic for different values of the integer k [86, 91–95], the theories have different
spectra of HS currents and, hence, the background fields they couple to. Therefore, one can
have an access to a larger set of CHS gravities by picking different vacua. It is a vital point of
Segal’s construction that even though most of the discussion does not have to refer to any par-
ticular vacuum, it is necessary to make a choice at some point since different vacua correspond
to different spectra of CHS fields, i.e. to essentially different theories.

As we discussed above, the action for the background fields can be obtained as a log-
divergent piece in the effective action of a conformal scalar field coupled to theHS background.
Here, we recall that within the approach of Segal the action is defined as

S[F] =
ˆ
dnxLx(F) , Lx(F) =

ˆ
dnpLx,p(F) , (2.32)

where Lx(F) is the Lagrangian that can be proved to be a local function of the p-Taylor com-
ponents of F and x-derivatives thereof. The LagrangianLx(F) results from evaluating an integ-
ral over p for an auxiliary Lagrangian density Lx,p(F) on the phase-space. In other words,

S[F] = trLx,p(F) =
ˆ
dnxdnpLx,p(F) , (2.33)

where tr denotes the usual trace in the Weyl quantization given by the phase-space integral of
the respective symbol. The phase-space Lagrangian Lx,p(F) is a specific star-product function
satisfying

L ′
x,p(F) ⋆F= 0= F ⋆L ′

x,p(F) , (2.34)

for any function F. It is easy to see that this property indeed guarantees gauge invariance
of (2.32). At the formal level this Lx,p function can be defined as the star-product Heaviside
step-function,

Lx,p(F) = Θ⋆(F) . (2.35)

11
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While some care is needed to work with such an object, see [24] and appendix B, it can be
shown to be well-defined13.

Let us sketch the proof of the gauge invariance of the action. There are two types of gauge
transformations involved in (2.22): (a) adjoint transformations via commutator [F, ξ]⋆ and (HS)
Weyl transformations via anti-commutator {F,w}⋆. The invariance under (a) is manifest due
to the use of star-product and of the invariant trace tr, i.e. its cyclic property tr[f,g]⋆ = 0.
The invariance under (b) is what fixes Lx,p to be the star-product Heaviside function, since
it requires

δwS= trδwLx,p(F) = tr
(
L′
x,p(F) ⋆ {F,w}⋆

)
= 2tr

(
L′
x,p(F) ⋆F ⋆w

)
= 0 ,

where we used the cyclicity of the trace. Similarly to Θ ′(x)x= δ(x)x≡ 0, the last equality
formally implies Lx,p(F) = Θ⋆(F)+ const. The constant does not give any contribution in the
Segal case, but it does lead to an ‘index’ for the covariantized CHS gravity we discuss in
section 3.

2.4. Tseytlin/Segal dictionary

At first sight, it may seem that Tseytlin’s and Segal’s constructions are completely unrelated.
Indeed, computationally this is true to an extent: in Tseytlin’s approach one has to extract
the log-divergent pieces of one-loop Feynman diagrams of matter fields with HS background
fields on external lines; in Segal’s approach one is to expand the star-product Heaviside step-
function. Nevertheless, one can give an argument [24, section 6.2] (see also [96, appendix D])
for why the end result has to be the same.

Let us start from Tseytlin’s definition,

S[F̂] = a n
2
[F̂] , (2.36)

and re-write it in terms of the heat kernel for F̂. The latter admits a small t expansion [25],

Tr
(
e−t F̂

)
= t−

n
2

∞∑
k=0

tk ak[F̂] , (2.37)

so that the CHS gravity action reads

S[F̂] = 1
2iπ

˛
dt
t Tr(e

−t F̂) , (2.38)

where the integral is over a closed contour including the origin of the complex plane. Now
recall that, given two differential operators D̂1 and D̂2, with symbols D1 and D2 respectively,
the symbol of their composition D̂1 ◦ D̂2 is the star product of their symbols, D1 ⋆D2. As a
consequence, the symbol of e−t F̂ is given by the star-exponential of the symbol F of F̂, i.e.

e−tF
⋆ :=

∞∑
k=0

(−t)k

k! F⋆k , F⋆k := F ⋆ · · · ⋆F︸ ︷︷ ︸
k times

. (2.39)

On top of that, the trace of a differential operator agrees with the trace of its symbol,

Tr(D̂) = tr(D) (2.40)

13 For example, there is also a sort of regularization involved into the definition ofΘ⋆(F) and one of the crucial steps
is to pick the vacuum F(0) = 1

2
p2 and treat all the other fields as small perturbations (large perturbations can reach a

non-equivalent vacuum). Also, evaluation of the p-integral requires Euclidean signature, but onceLx(F) is computed,
the corresponding action is gauge invariant for any choice of the signature.

12
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Figure 1. Deformation of the contour used to pick up the Seeley–DeWitt coefficient of
the logarithmic divergence in the trace of the heat kernel.

so that the CHS gravity action can be written as

S[F̂] = 1
2iπ

˛
dt
t tr(e

−tF
⋆ ) . (2.41)

Assuming that the trace of the star-exponential of (−tF) is analytic in the <(t)> 0 region of
the complex t-plane, we can deform the original closed contour around the origin to a half-
circle whose diameter consists of the line defined by <(t) =−ϵ with ϵ→ 0+ (see figure 1).
Further assuming that tr(e−tF

⋆ ) goes to 0 when |t| →∞, the contribution of the contour integral
on the arc of the half-circle vanishes as the radius is sent to infinity, so that the action (2.41)
now reads

S[F̂] = lim
ϵ→0+

1
2iπ

ˆ +∞

−∞

dτ
τ−iϵ tr(e

iτ F
⋆ ) . (2.42)

Finally, assuming that we can exchange the order of the trace and the contour integral, the
above action can be re-written as

S[F̂] = tr
(
Θ⋆(F)

)
, (2.43)

where

Θ⋆(a) := lim
ϵ→0+

1
2iπ

ˆ +∞

−∞

dτ
τ−iϵ e

iτa
⋆ , (2.44)

is the Heaviside star-function, as introduced by Segal [24]. Even though some of the steps
followed previously may seem a bit formal (in the sense that we had to assume some analytical
properties of e−tF

⋆ and its trace), Segal showed how to compute the quadratic and cubic pieces
of the above action with F= 1

2 p
2 +O(h), where h denote CHS fields (see appendix B for more

details).

3. Covariant action for CHS gravity

As it is clear from the review of the two approaches to CHS gravity recalled in the previous
section, there is no doubt that this class of theories does exist and comprises well-defined local
field theories. CHS gravity is, first of all, a theory of gravity and, hence, it is important to have

13
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the diffeomorphism/Weyl symmetry and HS extensions thereof represented in a simple way.
This is the goal of the present section.

3.1. Parent form of the off-shell Segal system

The off-shell Segal system (2.22) can be equivalently reformulated in a coordinate-
independent and globally well-defined way with the help of a version of the Fedosov quantiz-
ation approach. From the field theory perspective, this amounts to what is known as the parent
reformulation [47–49]. Its application to CHS gravity was already detailed in [40, appendix A].

The reformulation is constructed as follows. We consider a formal version of the quantized
phase space (2.17). This is obtained by taking Weyl algebra A2n of polynomials in pa with
coefficients in formal power series in ya with the product being the Moyal–Weyl star-product,
denoted ∗ so as to distinguish it from the previous section (as before the algebra is considered
as that over R[[ℏ]]). Given an n-dimensional space-time manifold X , consider a Weyl algebra
bundle W(X ) over X , whose fiber at x ∈ X is a Weyl algebra A2n, associated with TxX ⊕
T∗xX . In other words, sections of this bundle are elements of Γ

(
S(TX )

)
⊗Γ
(
Ŝ(T∗X )

)
where S

denote the symmetric algebra and Ŝ its completion14. Consider then a A2n-valued connection
1-form A and a section F of W(X ), subject to the following equations15:

dA+ 1
2ℏ [A,A]∗ = 0 , dF+ 1

ℏ [A,F]∗ = 0 , (3.1)

and the following gauge symmetries

δξ A= dξ + 1
ℏ [A, ξ]∗ , δξ,wF= 1

ℏ [F, ξ]∗ + {F,w}∗ , (3.2)

where ξ and w are sections of W(X ), i.e. locally they are zero-forms with values in A2n, and
w satisfies

dw+ 1
ℏ [A,w]∗ = 0 . (3.3)

Note that the gauge parameter w is subject to a differential constraint. In fact, it is equival-
ent to an algebraic one provided that the term dxµeaµ(x)pa in A, which is linear in p and y-
independent, is determined by an invertible eaµ(x), as we assume below. Indeed, this condition
then allows one to uniquely express all the components of w in terms of w|y=0, as is explained
in section 4.We also assume that gab(x) determining the term quadratic in p and y-independent,
1
2g

ab(x)papb, in F is invertible.
The above system is obtained as a partial gauge fixing of the equivalent (locally in the space-

time) representation of the off-shell Segal system proposed in [47]. In particular, because the
relevant gauge transformation is algebraic and the gauge condition is strict, the gauge fixing
produces an equivalent system.Moreover, the above system is also off-shell. The system (3.1)–
(3.3) will be called parent Segal system and solves the problem of covariantizing the off-shell
Segal system (2.22). Note also that if one omits the gauge transformations with parameters
w, equations (3.1) and (3.2) are precisely the defining equations for the Fedosov-like connec-
tion and the lift of functions in the version of the Fedosov quantization suitable for cotangent

14 This distinction between the symmetric algebra of TX and the completion of the symmetric algebra of T∗X reflects
the fact that we are considering polynomials in p (coordinates on the fibers of T∗X ) and formal power series in y
(coordinates on the fibers of T∗X )..
15 Note that a simple extension of this parent system would be to require that the curvature of A takes values in the
center of the Weyl algebra (i.e. is simply given by a closed 2-form) instead of vanishing, exactly like in Fedosov
quantization.
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bundles. These equations were also discussed in [47, 97] as an off-shell system for massless
HS fields.

It is easy to give an independent proof of the equivalence by employing a special gauge
where A= dxµδaµ pa

16. As such, this gauge is reachable locally, see section 4 and appendix D
for details. We will also call it Segal’s gauge, for it is easy to make contact with the Segal
approach of section 2.3. Indeed, in this gauge

F= F0(x+ y,p) , ξ = ξ0(x+ y,p) , w= w0(x+ y,p) , (3.4)

and the residual gauge symmetry reproduces the off-shell Segal system in terms of the initial
data F0, ξ0 and w0 (which are the y-independent piece of these 0-forms). Note that ξ is uncon-
strained in (3.2), but the requirement to maintain Segal’s gauge implies dξ+ 1

ℏ [A, ξ]∗ = 0,
i.e. the parameters of the residual transformations are covariantly constant.

Although equations (3.1) and (3.3) involve space-time derivatives, they are equivalent to
algebraic equations as they allow one to reconstruct a solution from the initial data at y= 0.
Indeed, as it is easy to observe in Segal’s gauge, the initial data for F, ξ and w is given by
arbitrary functions of x and p. The fiber-wise Moyal–Weyl star-product in y− p space induces
the one on x and p, and we can recover all formulas from section 2.3.

The notation suggests that ξ is responsible for a covariantized version of (HS) diffeomorph-
isms and w is responsible for (HS) Weyl transformations. A special feature of this formulation
is that the actual Segal gauge transformations (2.22) are associated with covariantly constant
ξ and w. Parameters w of (HS) Weyl symmetry are always constrained by (3.3) in order for
the transformed F to obey (3.1). Therefore, Segal gauge transformations should be associated
with

δξ A= 0 , δξ,wF= 1
ℏ [F, ξ]∗ + {F,w}∗ , (3.5)

where ξ and w obey

dξ + 1
ℏ [A, ξ]∗ = 0 , dw+ 1

ℏ [A,w]∗ = 0 . (3.6)

From the point of view of physical fields hidden in A and F (as the coefficients of their power
series expansion in y and p), gauge transformations with unconstrained parameters ξ represent
field redefinitions, which we discuss later in section 4. Further reduction of symmetries is
possible if we consider those that preserve a given background A= A(0) and F= F(0). This
way we recover the HS algebra hs(□ϕ) for F(0) = 1

2 p
2 ≡ 1

2 η
ab papb and A(0) = dxµδaµ pa.

The advantage of the parent reformulation is that it is globally well-defined for any space-
time manifold X 17. In particular, it is manifestly coordinate independent and does not require
any predefined background geometrical structures. In order to illustrate this property, let us
mention that the system encodes a particular star product on T∗X , which is still determined by
an affine connection on X (along with extra structures, in general) hidden in the field A, but
now A is a part of the field content and not a predefined background field.

The parent Segal system allows us to parameterize covariant derivatives of the physical
fields hidden in the initial data F|y=0 and A|y=0 as auxiliary fields inside F and A that are
reconstructed by solving (3.1). Since the parent Segal system gauges the HS diffeomorphisms
ξ of the off-shell Segal system, (3.1) encodes fully HS covariant derivatives of the initial data,

16 In particular, this implies picking a coordinate frame where eaµ = δaµ. In the Fedosov deformation quantization of
general symplectic manifolds the analogous gauge can be chosen locally and requires Darboux coordinates on the
base manifold.
17 Of course, the existence of Lorentzian metric imposes some restrictions on the topology of X .
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i.e. roughly speaking, it defines for us a HS covariant derivative d+ 1
ℏ [A,•]. In order to con-

struct an action, we will also need an appropriate HS covariant version of the measure
√
g,

which is related to the quantum trace discussed below.

3.2. Covariant action

What we are after is an invariant definition of Segal system, which does not depend on the
particular choice of coordinates and/or predefined geometric structures such as an affine con-
nection determining the star-product. The first step is to reformulate the system in the parent
form (3.1)–(3.3). In the second step, we define an action in terms of the parent fields using a
version of the invariant trace proposed by Feigin et al [50, section 4]. More specifically, their
construction allows one to define a trace over the algebra of functions of a symplectic manifold
endowed with a star-product obtained using Fedosov quantization, in an invariant way. In the
case of the flat symplectic manifold R2n, the trace reduces to the usual integral of the phase
space, used in Segal’s formulation of CHS gravity.

The core of the construction is the Hochschild 2n-cocycle with values in A∗
2n,

Φ :A2n⊗ . . .⊗A2n︸ ︷︷ ︸
2n+1 times

−→ C (3.7)

of the Weyl algebra A2n generated by formal power series in ya and polynomials in pa, see
appendix C for further details. Using this cocycle, one can build a reduced polylinear map

µ :A⊗(n+1)
2n −→ C[p] , (3.8)

defined as18

µ(a0|a1, . . . ,an) = [Φ](Tp ′a0;Tp ′a1, . . . ,Tp ′an,y
b1 , . . . ,ybn)ϵb1...bn |p ′a=pa , (3.9)

where Tp ′a(y,p) = a(y,p+ p ′) and [Φ] denotes the antisymmetrization of Φ in its 2n argu-
ments, i.e. [Φ] is the associated Chevalley–Eilenberg 2n-cocycle with values in A∗

2n.
Let us list here the algebraic properties of the map µ:

(i) Total antisymmetry in its n last arguments,

µ(a0|aσ1 , . . . ,aσn) = (−1)|σ|µ(a0|a1, . . . ,an) , (3.10)

for any elements a0,a1, . . . ,an ∈ A2n of the Weyl algebra and any permutation σ ∈ Sn;
(ii) The normalization condition,

µ( f;pa1 . . . ,pan) =
1
n! ϵa1...an f |y=0 , (3.11)

for any f ∈ A2n;
(iii) The ‘cocycle condition’, modulo total derivative in p-space,

18 Another option is to plug in dpaya in the last slots and get a cocycle with values in top-forms of p-fiber which is a
natural integration object over fiber (see also appendix D).
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n∑
i=0

(−1)iµ([a−1,ai]∗;a0, . . . , âi, . . . ,an)

+
∑

0⩽ i<j⩽n

(−1)i+jµ(a−1; [ai,aj]∗,a0, . . . , âi, . . . , âj, . . . ,an) = ∂
∂pa
φa(a−1;a0, . . . ,an) ,

(3.12)

for some φa(a−1|a0, . . . ,an) ∈ C[p] (see appendix C for more details);
(iv) The sp(2n,R)-invariance,

µ(a;−, . . . ,−) = 0= µ(−;−, . . . ,a, . . . ,−) , (3.13)

for any element a ∈ sp(2n,R)⊂A2n
19.

The above structure allows us to define an action principle as follows. Let l∗(F) be a star-
product function (see appendix B for more details), and consider the following functional

S[A,F] =
ˆ
X

ˆ
p−fiber

µ
(
l∗(F);A, . . . ,A

)
, (3.14)

where the fields A and F are subject to the off-shell constraints (3.1). This action is invariant
under the gauge transformations generated by ξ, up to boundary terms: indeed, upon using
the property (iii) of the map µ, together with the flatness and covariant constancy of A and F
respectively, one can show that (see corollary C.3 in appendix C)

δξµ
(
l∗(F);A, . . . ,A

)
∝ d(. . .)+ ∂

∂pa
(. . .)a , (3.15)

i.e. the integrand of (3.14) is gauge invariant up to a total derivative. Note that the particular
form of l∗ does not matter for this property, what is important is that l∗(F) is covariantly
constant with respect to the connectionA, which is the case sincewe assumeF to be covariantly
constant.

The choice of an appropriate star-function l∗ is however crucial to ensure the invariance of
the above action under HS Weyl transformations, i.e. gauge transformations generated by w.
To see that, let us first point out that the action (3.14) can be interpreted as a trace. Indeed,
interpreting A as a Fedosov connection the space S(X ) of functions on T∗X can be endowed
with a star-product, via

f ⋆ g := (F ∗G)|y=0 , (3.16)

where F= F( f) andG= G(g) are the unique covariantly constant sections such that F|y=0 = f
and G|y=0 = g (see appendix E). Then for any f ∈ S(X ) of compact support, the operation

trA( f) :=
ˆ
X

ˆ
p−fiber

µ(F;A, . . . ,A) , (3.17)

defines a trace, in the sense that it verifies

trA( f ⋆ g) = trA(g ⋆ f) , (3.18)

for any other g ∈ S(X ). This cyclicity property also follows directly from the flatness of A,
the covariant constancy of F and G, and the cocycle condition obeyed by µ, upon discarding

19 Recall that the Lie algebra sp(2n,R) is embedded in the Weyl algebra A2n as the subspace of quadratic elements.
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total derivative terms. The action (3.14) can then be re-written as

S[A,F] = trA
(
l⋆( f)

)
, (3.19)

with f = F|y=0, and its variation under HS Weyl transformations reads

δwS= 2trA
(
l ′⋆( f) ⋆ f ⋆w0

)
=

ˆ
X

ˆ
p−fiber

2µ
(
l ′∗(F) ∗F ∗w;A, . . . ,A

)
, (3.20)

where w0 = w|y=0. As in the Segal case, one can see that the choice l∗(F) = Θ∗(F)—the
Heaviside function, guarantees the invariance of the action under HS Weyl transformations,
since l ′∗(x) ∗ x= δ∗(x) ∗ x= 0 (at least formally, see appendix B for more details). On top of
that, this choice also implies that our action reduces to Segal’s around flat space. Indeed, for
X = Rn, the choice A(0) = dxµδaµ pa can be made globally, so that the action reduces to

S[ f ] = S[A= A(0),F= F( f)] =
ˆ
R2n

Θ⋆( f) , (3.21)

upon using the normalization property (ii) of µ, and the fact that the star-product ⋆ simply
becomes the Moyal–Weyl star-product in x and p for this particular choice of connection A=
A(0).

The above analysis implies that the system is gauge invariant under the transformations
generated by the gauge parameters ξ and w. Let us dwell on the interpretation of the system:
action (3.14) is understood as a functional defined on the space of solutions of the off-shell
system (3.1). As we are going to see in the next subsection, using the gauge freedom one can set
A to be a fixed connection while solutions for F are 1:1 with the unconstrained configurations
f(x,p) = F|y=0. Consequently, the functional (3.14) gives a globally well-defined action on the
configuration space of unconstrained f(x,p).

4. Gauge conditions, field redefinitions, and background fields

The action (3.14) supplemented with the off-shell constraints (3.1) and gauge transforma-
tions (3.2) and (3.3) of the parent Segal system defines the action of CHS gravity in a cov-
ariant and coordinate-independent way. However, in this formulation the system involves an
overcomplete set of fields, which effectively reduces to the minimal one only upon taking
into account off-shell constraints and algebraic gauge transformations. Below we discuss this
procedure in more details, and identify several useful gauge conditions.

4.1. Segal gauge

Our first task is to demonstrate that locally any solution to the zero-curvature equation (3.1) is
equivalent to one where A= A(0) with some fixed A(0). Recall that we consider connections A
whose piece linear in p is invertible, i.e. eaµ entering dxµeaµ(x)pa is invertible. In other words,
we want to prove that locally all flat connection on the Weyl bundle with an invertible eaµ
belong to the same gauge orbit. The parent version of HS diffeomorphisms act on A and F as

A ′ = e
−λ

ℏ
∗ ∗ (ℏd+A) ∗ e

λ
ℏ
∗ , F ′ = e

−λ
ℏ

∗ ∗F ∗ e
λ
ℏ
∗ ,

δλA= dλ+
1
ℏ
[A,λ]∗ , δλF=

1
ℏ
[F,λ]∗ ,

(4.1)

where in the second line we list the infinitesimal version. In the present local analysis, we take
A(0) = dxµδaµpa. It is convenient to denote space-time coordinates by xa so that A(0) = dxapa.
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Using the above gauge transformations with λ of the form λa(x)ya, one can set to zero
the y,p-independent term in A. Then λ= λbay

apb allows us to set eab = δab . Furthermore, the
flatness condition for A sets to zero the antisymmetric part of hab entering A as dxahabyb in A.
The symmetric part is then set to zero by gauge transformations with λ of the form λabyayb so
that one can assume that A= dxapa+ terms of higher order in y,p.

Suppose that A′ is another flat connection with invertible eab. As above we can also assume
that it starts with dxapa. Introduce the following degree:

deg(y) = 1= deg(p) , deg(ℏ) = 2 , (4.2)

which is precisely the degree used in Fedosov quantization, and hence we will refer to it from
now on as the Fedosov degree. Expanding A and A′ according to this degree as A= A(1) +
A(2) + · · · , and similarly for A′, one has A(1) = A ′

(1).
We then continue by induction. To this end, let us assume that A(l) = A ′

(l) for all l⩽k. The
zero-curvature equations for A and A′ imply

δ(A ′
(k+1) −A(k+1)) = 0 , δ ≡−1

ℏ
[A(1), ·]∗ = dxa

∂

∂ya
, (4.3)

where following Fedosov we have introduced a nilpotent operator δ. Because the cohomo-
logy of δ is trivial in nonvanishing form-degree, it follows A ′

(k+1) −A(k+1) = δλ(k+2) for some
λ(k+2). Applying gauge transformation (4.1) withλ= λ(k+2) toA′ one findsA−A ′ is of degree
k+ 2 or higher. In particular, taking A= dxapa, one finds that this gauge is locally reachable.

Despite this gauge being reachable only locally, it is very instructive. In particular, it is
clear that the covariant constancy condition dF+ 1

ℏ [A
(0),F]∗ = 0 has a unique solution F=

f(x+ y,p) satisfying F|y=0 = f for any unconstrained f = f(x,p).

4.2. Metric-like gauges

Segal’s gauge just discussed is the simplest example of a gauge where all the independent
fields are contained in F, while A is set to a background value. We refer to such gauges as
metric-like ones.

A class of globally well-defined connections on theWeyl bundle can be constructed starting
with a given torsion-free affine connection. More specifically, let

ϖ = eaPa+ΓabT
b
a , Pa = pa , Tab := ya pb , (4.4)

verify

dea+Γab e
b = 0 , (4.5)

so that its curvature is given by

dϖ+ 1
2ℏ [ϖ,ϖ]∗ = RabT

b
a . (4.6)

It is a standard statement [46] (see also [40, 47] for precisely this setup and appendix E for
a proof of a more general statement) that such a connection has a unique completion A such
that A(0) = 0,A(1) +A(2) =ϖ and hA(l) = 0 for l> 2, where we again use the decomposition
in Fedosov degree (4.2). Here h is a contracting homotopy for δ, given by

h= 1
N y

a eµa ı∂µ
, (4.7)

where ı∂µ
denotes the interior product by the vector field ∂µ, and N is the operator counting

the sum of the form degree as well as the degree in y. Note also that the completion is such

19



J. Phys. A: Math. Theor. 56 (2023) 385402 T Basile et al

that all A(l) are linear in p. The first few orders read as

A= eaPa+ΓabT
b
a− ea

(
1
3 Rab

d
c y

byc pd+ 1
12 ∇bRac

e
d y

bycyd pe

+
[

1
60 ∇b∇cRad

f
e+

2
45 Rab

g
cRde

f
g
]
ybycydye pf+ · · ·

)
,

(4.8)

where the . . . denote corrections of higher order in y, but do not contain any terms in ℏ (this
is due to the fact that ϖ is linear in p, see appendix E). Similarly, the first few orders of a
covariantly constant section F such that F|y=0 = f(x,p) are given by

F= f + ya∇af + 1
2 y

ayb (∇a∇b+
1
3 Rab

c
d pc ∂

∂pd
) f + · · · , (4.9)

where the . . . represent higher order corrections in both y and ℏ.
It can be useful to takeϖ to be a metric-compatible connection. In this case, A constructed

above and F determined by f = 1
2 η

abpapb, where η is a Minkowski metric, describe a gravita-
tional background. In particular, given a frame e, the flat connection A is entirely determined
by the metric gµν = ηabeaµe

b
ν .

The gauge just constructed can be considered as a covariantized and globally well-defined
version of the Segal gauge. A reason to call it metric-like is that the independent fields encoded
in f(x,p) are totally symmetric tensors (a covariantized version of Fradkin–Tseytlin fields).
This gauge is useful in the analysis of the propagation of CHS fields on gravitational back-
grounds, and it was already employed in this context in [40].

By employing a fixed metric-like gauge, the covariantized Segal action becomes a func-
tional of the metric-like CHS fields encoded in f(x,p). Because this action is gauge-invariant,
the gauge-fixed actions corresponding to gauge-equivalent background connections A and A′

should be related by a field redefinition.
Note also that by a suitable gauge transformation one can set eaµ = δaµ, i.e. pick a coordinate

local frame. In this case, the flat connection reads

A= dxµ (pµ +Γλ
µν y

ν pλ − 1
3 Rµν

λ
σ y

νyσ pλ + · · ·) . (4.10)

Let us alsomention that, due to the sp(2n,R)-invariance of cocycleµ, (3.17), the connection
Γ never appears alone in the expression of the action. Indeed, it is the component of A along a
quadratic element of the Weyl algebra, and hence belongs to its sp(2n,R) subalgebra. In other
words, Γwill appear in the final action only through the covariant derivative∇, or its curvature
R.

The above construction of a flat connection starting from a curved one is an instance of
the slightly more general mechanism of connection flattening in the Weyl algebra, which is
encompassed in the following proposition.

Proposition 4.1. Let D be a connection on the Weyl bundle W(X ), whose connection 1-
form is A2n-valued and acts in the adjoint. Let in addition the Fedosov degree 1 piece of
D be an invertible vielbein. Then there exists a 1-form w ∈ Ω1(X )⊗Γ(Ŵ(X )) such that
D+ 1

ℏ [w,−]∗ is a flat connection. Moreover, any f ∈ Γ
(
S(TX )

)
has a unique completion to

a section F ∈ Γ(W(X )) such that DF+ 1
ℏ [w,F]∗ = 0 and F|y=0 = f. We refer to F as to a

covariantly-constant lift of f.

Say that the connection on theWeyl bundle is (locally) given byD = d+ 1
ℏ [ϖ,−]∗, then the

flat connection is given by d+ 1
ℏ [A,−]∗ withA=ϖ+w. For instance, in the previous example

we considered an affine connection encoded by the ϖ = eaPa+ΓabT
b
a valued in igl(n,R),

but in principle, one could consider more general, nonlinear connections as a starting point.
The proof of this statement is a minor modification of the proof that any symplectic connection
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can be lifted to a flat connection on theWeyl bundle of a symplectic manifold [46, theorem 3.2]
(see also [98, theorem 2]) and is therefore relegated to appendix E.

4.3. Frame-like gauges

In some sense, opposite to metric-like gauges are frame-like ones. In these gauges, all the
dynamical fields are contained in the A-field and are interpreted as components of a connection
1-form.

To see this, let us again use the Fedosov degree (4.2) and start with a generic solution
(A,F) of the parent system (recall that eaµ(x) in the term dxµeaµ(x)pa in A is assumed invert-
ible). In addition, we now also assume gab(x) in the term 1

2 g
abpapb in F to be invertible and

to have Lorentzian signature. Performing a finite gauge transformation (4.1) with λ of the
form ha(x)ya, one can achieve F(1) = fa(x)ya, i.e. remove the term linear in pa20. In so doing,
the transformed A gets in addition the nonvanishing A(0) = A(0)(x) contribution. In the next
step, we perform a gauge transformation with λ of the form λaby

bpa in order to set F(2) to be
1
2 η

abpapb, where ηab is the inverse of the standard Minkowski metric.
We then proceed by induction. Suppose that by further gauge transformations we suc-

ceeded to set the p-dependent parts of F(l)|y=0 to zero for all l⩽k save for l= 2. The
p-dependent part of F(k+1)|y=0 can be then gauged away by parameters of the form∑

mℏmyaλ
b1...bk−2m
a pb1 . . .pbk−2m (i.e. of degree k+ 1 and linear in y). By degree reasoning, such

gauge transformations cannot affect F(l) with l⩽k+ 1. At the same time, we can eliminate
the p-independent term in F(k+1)|y=0 by the leading (in ℏ) term of the gauge transformation.
However, in so doing one can get nonvanishing contributions in F(k+1), which are proportional
to ℏ. The procedure can then be iterated, giving a p-independent F(k+1).

The induction then implies that the gauge where F|y=0 = D(x)+ 1
2 η

abpapb is reachable. In
other words, the configuration of the parent system is entirely determined by the configuration
of the connectionA (although, strictly speakingD is not captured byA). Indeed, proposition 4.1
implies that D(x)+ 1

2 η
abpapb admits a unique covariantly constant lift F satisfying F|y=0 =

D(x)+ 1
2 η

abpapb.
A natural question is then which components of A can be taken as independent fields. It

turns out that the minimal set is given by the HS frame field encoded in

E(p) = dxµEµ(x,p) = dxµ (aµ(x)+ eaµpa+ · · ·) . (4.11)

For the covariance we also take a fixed torsion-free Lorentz connection Γ = dxµωµ
a
b ybpa.

Starting with

ϖ = dxµEµ(x,p)− dxµ(∂µaν)e
ν
a y

a+Γ , eaµe
µ
b = δab , (4.12)

a minor modification of the proof of the proposition 4.1 allows one to construct a flat connec-
tion A satisfying A|y=0 = E(p) (and an extra condition, see appendix E). An alternative proof,
is given in appendix F.

We have just seen that the HS frame field (whose configurations are 1:1 with metric-like
CHS fields if one takes the totally symmetric components of the HS frame) serve as the initial
data for the A-field. In particular, the covariantized action (3.14) can be written in this gauge
as a functional of the HS frame field E(p). We conclude that this approach also generate a
frame-like description of the Segal action.

20 Strictly speaking, this is true under the assumption that all s ̸= 2 fields are small compared to s= 2 field. Otherwise,
the respective series may diverge.
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It is worth mentioning that the parent formulation was initially developed to explicitly relate
metric-like and frame-like formulations. In particular, the Lagrangian version of the parent
formalism [99, 100] allows one to systematically derive a frame-like formulation starting from
the metric-like one, so that it is not surprising that these formulations are reproduced through
different gauges of the parent system.

To illustrate the relation between the frame-like and the metric-like gauges, let us fix a
gravitational background described by the frame ea and the Lorentz connection ωab, so that
the metric is gµν = eaµe

b
νηab, and consider a linearized spin-s field Φa(s)(x) on this background

described in the metric-like gauge. We restrict ourselves to a single CHS field in F since the
argument is about free fields for simplicity. More precisely, the configuration for A and F reads
as

A= eaPa+ 1
2 ω

abLab+ · · · , F= 1
2 p

2 + · · ·+Φa(s) pa . . .pa+ · · · (4.13)

where . . . denotes the terms that complete the initial data of A and F to a solution of the parent
system (3.1). Now, if we perform a gauge transformation with

ξ = 1
2 Φ

a(s) yapa . . .pa+ · · · , (4.14)

we get as a result

A= eaPa+ 1
2 ω

abLab− 1
2 eaΦ

ab(s−1) pb . . .pb+ 1
2 ∇Φa(s) yapa . . .pa+ · · · , (4.15)

and

F= 1
2 p

2 + · · · , (4.16)

i.e. we have moved the linearized spin-s field from F to A. In the last two components of A, we
see the CHS vielbein ea(s−1) = emΦma(s−1) in a particular gauge followed by its first auxiliary
field that is expressed in terms of the first derivative of Φa(s).

Let us finally mention that in showing the existence of the metric-like and the frame-like
gauges, we only made use of HS diffeomorphisms. It follows that the analogous gauges are
reachable in the version of the parent system [47, 97, 100] with HS Weyl transformations
dropped, which describes nonlinear gauge transformations of the off-shell massless HS fields
with the trace constraint relaxed. Let us note that massless HS fields within a similar framework
were discussed in [101].

4.4. Conformal geometry gauge

We now get back to metric-like gauges and demonstrate that with a suitable choice of A one
can make the underlying conformal geometry manifest.

The idea of this approach is to observe that the conformal algebra so(n,2) can be identified
as a Lie subalgebra of A2n, and more specifically of its subalgebra of elements linear in p. In
the standard basis, the commutation relations read as

[D,Pa] = +Pa , [Lab,Pc] = Paηbc−Pbηac , (4.17a)

[D,Ka] =−Ka , [Lab,Kc] = Kaηbc−Kbηac , (4.17b)

[Ka,Pb] = ηabD−Lab , [Lab,Lcd] = Ladηbc+ three more . (4.17c)

with Pa, Lab,D and Ka the generators of translations, the Lorentz transformations, dilation and
special conformal transformations respectively. They can be represented in A2n as
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Pa = pa , Lab = 2p[a yb] , D= ya pa+∆ , Ka = ya (y · p+∆)− 1
2 y

2 pa , (4.18)

where ∆ ∈ R is any real number for the moment.
A generic connection ϖ valued in the conformal algebra,

ϖ = eaPa+ 1
2 ω

abLab+ bD+ f aKa , (4.19)

can be put in a simpler form by gauge fixing its component b to zero, imposing that it is
torsionless (so that the spin-connection is expressed in terms of the vielbein) and taking fa to
be the Schouten 1-form21 Pa, whose components read

Pµ
a := 1

n−2

(
Rµ

a− 1
2(n−1) e

a
µR
)
, (4.20)

where Rµ
a = Rabµν e

ν
b and R= Raµ e

µ
a , with Rabµν the Riemann curvature of ω. The curvature of

this gauge fixed version of the conformal connection,

ϖ = eaPa+ 1
2 ω

abLab+PaKa , (4.21)

takes the simple form

dϖ + 1
2ℏ [ϖ,ϖ]∗ =

1
2 C

abLab+(∇Pa)Ka , (4.22)

where Cab := Rab− 2e[aPb] is the Weyl 2-form.
We can now apply the flattening procedure of proposition 4.1 to construct a flat connection

A starting from the previously described conformal connection ϖ. The first few orders of A
are given by

A= eaPa+ 1
2 ω

abLab+PaKa+ 1
3 e

aCabc
d ybyc pd

+ ea
(
1
2 ∇[bSa]|cd

e+ 1
12 ∇bCacd

e
)
ybycyd pe+ · · · ,

(4.23)

where we introduced the tensor

Sa|bc
d := Pae (δ

e
(bδ

d
c) − 1

2 η
edηbc) , (4.24)

and by construction, the higher orders terms in A will be contraction of the covariant derivat-
ive of the Weyl tensor C and the Schouten tensor P. Having determined A, we can now turn
our attention to the 0-form F, which can be constructed as a covariantly constant lift of an
unconstrained f(x,p). The first few orders of F are given by

F= f + ya∇a f + 1
2 y

ayb
(
∇a∇b+ [ 13 Cadb

c+ 2Sa|bd
c]pc ∂

∂pd

)
f + · · · , (4.25)

where the dots indicate corrections of higher order in y and ℏ22.
Now let us focus on the spin-2 case. That is, we consider that the 0-form F is simply the

completion of 1
2 p

2 = 1
2 η

ab papb,

F= 1
2 p

2 + yayb ( 16 Ca
c
b
d+ Sa|b

cd)pcpd+ · · · , (4.26)

into a covariantly constant section. With A being the completion of the normal Cartan con-
nection into a flat connection of the Weyl bundle, this gauge is a frame-like one. The gauge
transformations generated by a parameter w which is the lift of the Weyl parameter σ,

w= σ+ ya∇aσ+
1
2 y

ayb∇a∇bσ+
1
6 y

aybyc
(
∇a∇b∇c+ 2Sa|bc

d∇d
)
σ+ · · · , (4.27)

21 This last condition follows from imposing that the curvature ofϖ along the Lorentz generators F[ϖ]ab is traceless
in the sense that F[ϖ]abµν e

ν
b = 0. This connection is called the normal Cartan connection [102, definition 1.6.7 or

3.1.12], see also [103, section 2] and [104, section 3.2] for more details.
22 Note that ℏ corrections will appear in F only if f contains terms which are at least quadratic in p.
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reads

δwF= p2σ+ p2 ya∇aσ+O(y2) , (4.28)

thereby signaling F does encode a conformal spin-2 field. Since the connection A also contains
a conformal connection, and therefore also describes a conformal spin-2 field, let us check that
their gauge transformations are compatible. By this, we mean to check whether it is possible
to find a gauge parameter ξ such that the frame-like gauge is preserved, i.e.

δξ,wF=O(y2) , (4.29)

so that the connection A is transformed, and only the completion of 1
2p

2 in F, i.e. terms of order
2 or higher in y and ℏ, are affected. Inspecting the above equation at the first few orders, one
finds that ξ should take the form

ξ = σD+ ∂aσK
a , (4.30)

and hence it implements the usual gauge transformation of the normal conformal connection23.

4.5. Higher spin gauge

It is sometimes convenient to rearrange a theory in terms of the symmetries of one of its (max-
imally symmetric) backgrounds. In the CHS gravity case, this corresponds to F(0) = 1

2 p
2 ≡

1
2 η

ab papb. As it was already discussed in section 2.3, the global symmetry algebra of this back-
ground is exactly the HS algebra hs(□ϕ) of higher symmetries of Laplacian [24, 85] (more or
less by definition). The latter also fixes the conformal weight ∆ in (4.18) accordingly.

It turns out that one can reconstruct field configurations in the frame-like gauge of
section 4.3 in terms of a connection of the HS algebra. To this end, let us fix an embedding of
HS algebra as a subspace in A2n, together with a projection to this subspace and take as ϖ a
connection with values in the subspace. It can be then lifted to a flat connection A by applying
proposition 4.1. What is important is that independent fields sit in the HS frame part (which
is the y-independent part of ϖ) but the completion does not affect this part and hence gives a
particular lift of the HS frame to a flat A. The F field is then reconstructed by a covariantly
constant lift of 1

2 p
2 +D(x).

In this way we conclude that we succeeded to parameterize solutions to the parent system in
terms of a connection of HS algebra. Of course this parametrization is much more redundant
than the one in terms of HS frame. Moreover, it is also not clear how to explicitly identify the
HS algebra as a gauge algebra in this setup. It would also be very interesting to come up with
an appropriate HS extension of the normal Cartan connection.

4.6. Gauge symmetries vs. field redefinitions

Given that the action of CHS gravity S[A,F] depends on two fields that are subject to con-
straints (3.1), it feels necessary to dwell on possible interpretations of such an action. As we
have already discussed, one can make use of a metric-like gauge where the action becomes a
functional of the initial data f(x,p) only. Of course, it still depends on a fixed connection A but
it is considered as a parameter, or better, a background field. Thanks to the gauge invariance of
the covariant action, the change of A leads to a field redefinition in terms of f(x,p). This should

23 The fact that the coefficient of Ka in the gauge parameter is the derivative of the Weyl parameter σ is a consequence
of the fact that we have gauge fixed b (the gauge field associated with dilation) to zero earlier.
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be compared with the standard background field method (for gravity), see e.g. [33]. Note that
a version of the background field method in precisely this context was used in [40].

If, on the contrary, we employ a frame-like gauge, where the parent field configuration is
determined solely by a HS frame E(p), the action becomes a functional of E which is uncon-
strained. Alternatively, one can go for a more redundant description in which A is parametrized
by a connection of the HS algebra.

For applications it may be useful to distinguish between three different types of gauge sym-
metries of the parent Segal system:

(1) Those generated by parameters ξ that are not covariantly constant (dξ+ 1
ℏ [A, ξ]∗ 6= 0) cor-

respond to field redefinitions: they allow one to move components of A and F into one
another (as illustrated at the end of section 4.3). In fact, one has to consider the quotient
of all ξ by the covariantly constant ones;

(2) Those generated by covariantly constant parameters ξ and w are a covariant version of
Segal’s original gauge symmetries, in the sense that they affect only the 0-form F via the
commutator and anti-commutator respectively;

(3) Those generated by covariantly constant gauge parameters ξ and w and that also preserve
a given vacuum F(0) correspond to global symmetries and define a HS algebra, hs(F(0)).

5. Conclusions and discussion

We constructed a covariant action for the simplest class of conformal HS gravities, which can
be associated with the free scalar conformal matter, □ϕ = 0. CHS gravity is the theory of the
background conformal fields that couple to ‘single-trace’ operators, or to put it simply, bilinear
operators Js = ϕ∂ . . .∂ϕ+ . . . , most of which are conserved (HS) tensors.

The constructions of CHS gravity proposed by Tseytlin and Segal are closely related and
prove the theories to be well-defined (at least in terms of a perturbative expansion around flat
space background). It goes without saying that theories of gravity should admit manifestly
covariant, coordinate- and background-independent formulations. Addressing this question is
the goal of the present paper. It is quite amusing that the action of CHS gravity requires such
advanced constructions from deformation quantization as Shoikhet–Tsygan–Kontsevich form-
ality that gives a proper measure for the invariant trace on the algebra of quantum observables,
using the Feigin–Felder–Shoikhet cocycle. Somewhat related links to the same formality have
already been observed [105], in particular, for Chiral HS gravity [106–108].

The induced action for CHS gravity can be derived from a simple particle model, as men-
tioned in Segal’s paper [24] (see also [54]), or discussed in more details in [55]. As it turns out,
the action (3.14) can also be obtained from a particle model. Indeed, the main ingredient used
to construct this action, namely the Feigin–Felder–Shoikhet cocycle, admits a representation
as a correlation function in a particular one-dimensional sigma-model, often called topolo-
gical quantum mechanics [53, 109]. More specifically, this model is the simplest example of
AKSZ type [110], namely, the 1d AKSZ model whose target space is the BFV–BRST exten-
ded phase space of a constrained Hamiltonian systems24. The underlying BFV–BRST system
is precisely the BFV–BRST reformulation of the particle model [24] underlying CHS theory
and reviewed in appendix A. The Fedosov extension of the particle model again leads to an

24 Such AKSZ-like models were introduced in [111] and shown to produce the BV formulation for the respective
extended Hamiltonian action. If the Hamiltonian is non-trivial, such models have a slightly more general structure but
in the case at hand the Hamiltonian is trivial and the model is of AKSZ type.
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extended AKSZ sigma model which produces the invariant trace (and hence the FFS cocycle
itself) as a correlation function [53, 112]. Note that the Fedosov-like extension itself can be
understood as a passage to the extended BFV–BRST system [113]. Moreover, it is precisely
the BFV–BRST system underlying the parent reformulation [47, 48] we employ in this work.

Extensions and generalizations of the present work should exist along several lines: (a)
one can choose different vacua F(0) for F, which is equivalent to having the same type of
matter, e.g. scalar, but with different conformally-invariant equations, e.g. □kϕ = 0, k> 1 for
the scalar matter corresponds to F(0) = (p2)k; (b) one can choose different types of matter,
e.g. fermion ψ, or, more generally, a mixed-symmetry (spin-)tensor field, see [114] for the
discussion of the CHS gravity based on the free fermion (called Type-B) and [115, 116] for
further extensions; (c) supersymmetric extensions should also be possible and be based on the
Clifford–Weyl algebra, see the recent [45, 61] for N = 1.

We expect that the approach of this paper provides an efficient way to attack some of the
problems of CHS fields that have been around for a while: whether conformal gravity is a
consistent truncation of CHS gravity [39–41]?; what are the gravitational backgrounds that
admit free CHS fields [39–45]?; the structure of (HS) Weyl anomaly and, hence, the problem
of quantum consistency of CHS gravity.

It is well-known that the deformation quantization of a symplectic manifold M up to a
natural equivalence is in one-to-one with characteristic classes Ω[ℏ] = Ω0 + ℏΩ1 + · · · , where
Ωi ∈ H2(M,C) and Ω0 is the class of the symplectic form. In the case of a cotangent bundle
Ω0 is trivial. There is a simple deformation of the off-shell parent system (3.1)–(3.3), which
allows one to put CHS fields on an external electromagnetic background, e.g. Dirac string.
One needs a nontrivial class H2(X ,C) of the base manifold X itself, which can be added to
the rhs.

dA+ 1
2ℏ [A,A]∗ =Ω[ℏ] . (5.1)

This is one simple generalization of CHS gravity that is not accessible in a local chart, where
one can always impose Darboux coordinates. The possibility to add de Rham cohomology
classes as deformations to HS systems seems to be a quite generic feature [117, 118].

A closely related idea is that a general solution f = c1Θ(x)+ c2 to f ′(x)x= 0 contains the
constant term. Though it does not make any contribution in Darboux coordinates, for a general
compact symplectic manifold the quantity trA(1) leads to a particular case of Fedosov/Nest-
Tsygan index theorem [119–121]. However, the cotangent bundle is non-compact. It would be
interesting to see if some of the index theorems admit HS extensions. For example, Euler char-
acteristic is the second conformal invariant in 4d and appears on equal footing with the Weyl
gravity action in the studies of conformal anomalies. It remains an open question whether it
admits a HS extension andwhat is the interpretation of the corresponding topological invariant.

As it was already pointed out in [24] and explored in [75, 76], a CHS gravity can be coupled
to the matter it originated from (via the effective action approach or via the Segal approach).
In the Segal approach the corresponding coupling is simply

S[H,ϕ] = SCHS[H] + 〈ϕ|Ĥϕ〉 .

It would be interesting to find its covariant extension along the lines of the present paper.
Note that any CHS gravity can be truncated to its low spin (not higher than spin-two) sub-

sector by setting all HS fields to zero. Nevertheless, a HS extension nicely fits the deformation
quantization framework: it is natural to consider all differential operators, which is an associ-
ative algebra (Weyl algebra), rather than to restrict to vector fields (see also [82, 122] wherein
similar ideas are advocated). The low spin subsector of CHS gravity allows us to make a bridge
to conformal (super-)gravities.
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Concerning the overlap between CHS gravities and conformal (super)gravities, let us men-
tion a tremendous work done in [123, 124] that culminated in the complete action of the max-
imal N = 4 conformal gauged supergravity. Curiously, this action contains an arbitrary func-
tion of scalars, see [125] for the recent discussion. It is not clear how to generate this function
via the effective action idea since there does not seem to be possible to introduce this ambigu-
ity into N = 4 SYM coupled to background conformal supergravity fields [126]. It would be
very interesting to see if the approach advocated in this paper, i.e. HS geometry as deformation
quantization, can explain this ambiguity and extend it to HSs.

Another interesting closely related class of theories are self-dual truncations of CHS gravity,
which admit a natural twistor space formulation [127, 128]. These theories are specific to
four dimensions. Since these theories are much simpler than the full CHS gravity, it can be
instructive to see how their spacetime actions, which, in principle, are derivable from twistor
space, can be formulated within our approach. Similarly, one can try to construct a covariant
action for Chiral HS gravity [9–12], which at present is available either in the light-cone gauge
or for certain subsectors [14, 15] only.

Another interesting issue is whether the covariant action (and hence the underlying FFS
cocycle) can be systematically derived within a purely field-theoretical framework. Indeed,
starting from the Segal action one should be able to reconstruct its parent reformulation, and
hence reconstruct an appropriate version of FFS cocycle, using the approach of [99, 100].
A slightly alternative field-theoretical interpretation of the covariant action and its underly-
ing cocycle is in terms of a suitable BRST-invariant presymplectic structure (see [104, 118,
129, 130] for more details on the presymplectic BV-AKSZ approach). This would signal
an intriguing relation between the geometry of local gauge theories and algebraic structures
underlying the deformation quantization.

Let us also point out that the way CHS gravity emerges in the Segal construction is some-
what similar to the IKKT model based on a HS algebra studied e.g. in [16, 20, 22]. Both the
Segal construction and the HS-IKKT model [20–22] are examples of non-commutative field
theories. Lorentz invariance is violated in generic non-commutative theories due to explicit
dependence of Poisson structure θµν(x) on x. In the Segal construction, it is the phase-space
that is quantized and there is no explicit violation of Lorentz symmetry (θµν(x) pairs up x–p
and vanishes for x–x). In addition, the spacetime Lagrangian is obtained via tracing out or aver-
aging over the p-fiber, which does not violate Lorentz symmetry (in fact, the averaging over p,
as we showed, can be performed in a general covariant manner). In the HS-IKKT model, the
trick is in having a nontrivial fibration over the spacetime that is again averaged over without
having to violate Lorentz symmetry.
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Appendix A. BRST form of Segal

Consider the BFV phase space with coordinates (xa,pb) of ghost number 0, and a ghost
pair (c, b), i.e. of respective ghost number +1 and −1. We use the language of symbols and
star product (for the moment we assume Moyal–Weyl star product). The nonvanishing star-
commutators between these coordinates are

[xa,pb]∗ = ℏδab , [c,b]∗ = ℏ , (A.1)

and the algebra of functions in these coordinates is equipped with an anti-involution † defined
by

ℏ† =−ℏ, x† = x , p† = p , c† = c , b† = b , (A.2)

which verifies (AB)† = (−)|A||B|B†A† where |·| denotes the ghost number. A generic nilpotent
Hermitian BFV charge has the form

Ω= cF(x,p) , Ω† =Ω , (A.3)

with F† = F also Hermitian. Now we view Ω as a generating function of fields, and consider
the following gauge theory:

[Ω,Ω]∗ = 0 , δΞΩ=
1
ℏ
[Ω,Ξ]∗ , gh(Ξ) = 0 , Ξ† = Ξ , (A.4)

where Ξ is a generating function of gauge parameters. In our case Ξ = ξ(x,p)+ cbw(x,p)
with ξ† = ξ and w† =−w. In terms of components the gauge transformations read as:

δξ,wF=
1
ℏ
[F, ξ]∗ + {F,w}∗ . (A.5)

In particular F remains Hermitian. It is easy to see that the above precisely encode the Segal’s
gauge transformations. It follows that Segal’s gauge transformations are precisely the natural
symmetries of the constrained Hamiltonian systems describing the particle model. In particu-
lar, HS diffeomorphisms correspond to a quantized version of the canonical transformations
of the constrained surface, while HS Weyl transformations correspond to redefinitions of the
constraint.

The above BFV–BRST interpretation of the off-shell Segal system was proposed in [47]
(see also [71, 131]). It is a useful starting point to construct the respective parent reformu-
lation [47], from which the parent Segal system is obtained by gauge-fixing the gauge fields
associated to Weyl transformations.

Appendix B. More on the star-Heaviside function

In this appendix, we recall how to evaluate the Heaviside star-function, as introduced and
explained by Segal [24]. Let us start with the definition of a star-function: given a usual function
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which admits an integral representation of the form

f(x) =
˛
C
dt f̃(t)et x , (B.1)

where C is some contour in the complex plane, and f̃(t) a given function, the corresponding
star-function will be defined as

f∗(a) =
˛
C
dt f̃(t)et a∗ , (B.2)

for any elements a ∈ A2n of the Weyl algebra and where

et a∗ =
∞∑
k=0

tk

k! a
∗k , t ∈ C , a∗k := a ∗ · · · ∗ a︸ ︷︷ ︸

k times

, (B.3)

is the star-exponential. Any such star function can be expanded as a formal power series in ℏ,
of the form [24, section 5.2]

f∗(a) =
∞∑
n=0

ℏ2n
2n∑
k=2

f(k)(a)pn,k(a) (B.4)

where f(k) denotes the kth derivative of f and pn,k(a) are monomials of k in the first 4n deriv-
atives of a with respect to the variables of the Weyl algebra. In particular, the Heaviside star-
function is given in terms of the integral representation

Θ∗(a) := lim
ϵ→0+

1
2iπ

ˆ +∞

−∞

dτ
τ−iϵ e

iτ a
∗ , (B.5)

and admits a similar expansion in ℏ.
The crucial property of the Heaviside star-function is that, according to the expansion (B.4),

it verifies

Θ ′
∗(a) ∗ a= δ∗(a) ∗ a= 0 , (B.6)

since the derivative of the Heaviside distribution is the Dirac distribution. Note that the above
identity should be understood in the sense of distributions. Fortunately, this is enough to prove
the invariance under HS Weyl transformations of the Segal action (2.32), since its variation
reads

δwS[F] = 2
ˆ
dnxdnp δ∗(F) ∗F ∗w= 2

ˆ
dnxdnp

(
δ∗(F) ∗F

)
w= 0 , (B.7)

where the second equality is obtained upon disregarding a total derivative.
Since (B.6) can raise some doubts, let us illustrate that the quantum identity δ∗(a) ∗ a= 0

reduces to the classical one δ(a)a= 0 and its derivatives. Indeed, let us start with the general
expansion of f∗(H)25:

f∗(H) = f(H)+ ℏ2
(
1
6HABH

AHBf ′ ′ ′(H)+ 1
4HABH

ABf ′ ′(H)
)
+O(ℏ4) . (B.8)

Now, we can write down the expansion of f∗(H) ∗H to the same order:

f∗(H) ∗H= f(H)H+ ℏ2
(
1
6HABH

AHBf ′ ′ ′(H)+ 1
4HABH

ABf ′ ′(H)
)
H

+ ℏ2
(
1
2HABH

AHBf ′ ′(H)+ 1
2HABH

ABf ′(H)
)
+O(ℏ4) .

(B.9)

25 In this appendix {YA}, with A= 1, . . . ,2n, collectively denotes the 2n variables of the Weyl algebra A2n, ∂A ≡
∂/∂YA and HAB ≡ ∂A∂BH.
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Of course, this is just an expansion of g∗(H), where g(H) = f(H)H. In particular, we can
rearrange it with the help of g ′ = f ′H+ f, g ′ ′ = f ′ ′H+ 2f ′, etc to find

f∗(H) ∗H= g(H)+ ℏ2
(
1
6HABH

AHBg ′ ′ ′(H)+ 1
4HABH

ABg ′ ′(H)
)
+O(ℏ4) . (B.10)

Lastly, we take f(H) = δ(H) and observe that the leading term is just the classical identity
δ(H)H= 0, while the subleading ones are derivatives of it. Obviously, all of this is a con-
sequence of the fact that the map ρ : f(H) 7→ f∗(H) is a homomorphism from the subalgebra of
C∞(T∗X ) generated by H to the ∗-product subalgebra ofW(X ) generated by H. Therefore, ρ
maps f(H)g(H) to f∗(H) ∗ g∗(H), which we apply to f = δ(H) and g=H.

Appendix C. Modification of FFS cocycle

Let us denote by Φ the Chevalley–Eilenberg cocycle associated with the FFS cocycle, whose
expression is detailed below. For the sake of conciseness, we will rewrite it as

Φ(a0;a1, . . . ,a2n)

=

ˆ
u∈∆2n

[
D(∂y0 ,∂p0 ,∂yi ,∂pi ,u)a0(y0,p0)a1(y1,p1) . . . a2n(y2n,p2n)

]∣∣∣
y0=yi=p0=pi=0

, (C.1)

where a0,a1, . . . ,a2n ∈ A2n are elements of the Weyl algebra, ∆2n is the standard 2n-simplex
which can be defined as

∆2n =
{
(u1, . . . ,u2n) ∈ [0,1]2n |0⩽u1⩽u2⩽ . . .⩽u2n⩽1

}
, (C.2)

andD(∂y0 ,∂p0 ,∂yi ,∂pi ,u) is a function of the partial derivatives with respect to theWeyl algebra
variables {ya0,pa0,yai ,pai}, with i = 0, . . . ,2n and a= 1, . . . ,n, and the simplex coordinates u.
Explicitly, it is given by

D(∂y0 ,∂p0 ,∂yi ,∂pi ,u) = exp

ℏ ∑
0⩽k<l⩽2n

( 12 + uk− ul)(∂yk · ∂pl − ∂pk · ∂yl)

 det(∂yi ,∂pi) ,

(C.3)

where ∂yi · ∂pj = ∂
∂yai

∂
∂paj

, and u0 = 0 by convention. Note that the determinant part of this oper-
ator does not acts on the zeroth argument (a0) of Φ.

From the above cocycle, we can define a new one, simply by not setting the pai variables to
zero in the above expression but to the same value p ′

a for all i = 0, . . . ,2n, i.e.

Φ̃(a0;a1, . . . ,a2n)(p
′)

=

ˆ
u∈∆2n

[
D(∂y0 ,∂p0 ,∂yi ,∂pi ,u)a0(y0,p0)a1(y1,p1) . . . a2n(y2n,p2n)

]∣∣∣
y0=yi=0,p0=pi=p ′

,

(C.4)

for any a0,a1, . . . ,a2n ∈ A2n.

Lemma C.1. The map Φ̃ defined above is a Chevalley–Eilenberg cocycle of degree 2n for the
Lie algebra (A2n, [−,−]∗) associated with the Weyl algebra, with values in its dual whose
coefficients are extended to the algebra of polynomials C[p ′

a] in n variables.

Proof. This simply follows from the fact that Φ̃ is obtained by pre-composing each one of the
arguments of Φ by an automorphism of the Weyl algebra A2n. Indeed, Φ̃ is simply obtained
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from Φ by shifting its argument by a parameter p′, i.e. ai(yi,pi)→ ai(yi,pi+ p ′). In other
words,

Φ̃(a0;a1, . . . ,a2n)(p
′) = Φ

(
Tp ′(a0);Tp ′(a1), . . . ,Tp ′(a2n)

)
, (C.5)

where we introduced the operator Tp ′(a)(y,p) := a(y,p+ p ′), for any a ∈ A2n. This oper-
ator is an automorphism of the Weyl algebra: the Moyal–Weyl star-product is invariant under
Sp2n⋉R2n, the semi-direct product of the symplectic group with the abelian group of transla-
tion in 2n-dimensions, and Tp ′ is nothing but the operator representing the abelian subgroup
of n-dimensional translations. Since Φ̃ is simply the composition of the cocycle Φ with auto-
morphisms of the Weyl algebra, it follows directly that Φ̃ verifies the same cocycle condition
as Φ, hence the lemma.

Next, one can define a multilinear map

µ :A2n⊗A∧n
2n → C[pa] , (C.6)

by the formula

µ(a0|a1, . . . ,an)(p) := 1
n! ϵb1...bn Φ̃(a0;a1, . . . ,ad,y

b1 , . . . ,ybn)(p) , (C.7)

for any a0,a1, . . . ,an ∈ A2n. Note that µ verifies26

Φ̃( f;pa1 , . . . ,pan) =
1
n! ϵa1...an f|y=0 , (C.8)

for any f ∈ A2n, as a consequence of the normalisation condition [50, section 4.2, IV] of Φ.

Lemma C.2. The map µ defined above verifies

∂
∂pa
φa(a−1|a0, . . . ,an) =

n∑
i=0

(−1)iµ([a−1,ai]∗|a0, . . . , âi, . . . ,an)

+
∑
i<j

(−1)i+jµ(a−1; [ai,aj]∗,a0, . . . , âi, . . . , âj, . . . ,an) ,
(C.9)

with

φa(a−1|a0, . . . ,an) := (−1)n−1

(n−1)! ϵab1...bn−1 Φ̃(a−1;a0, . . . ,an,y
b1 , . . . ,ybn−1) , (C.10)

and for any a−1,a0, . . . ,an ∈ A2n.

Proof. This is a direct consequence of the fact that Φ̃ is a Chevalley–Eilenberg cocycle. Indeed,
starting from

0= 1
n! ϵb1...bn (δΦ̃)(a−1;a0,a1, . . . ,an,y

b1 , . . . ,ybn) (C.11)

where δ denotes the Chevalley–Eilenberg differential, one finds

0=
n∑

i=0

(−1)iµ([a−1,ai]∗|a0, . . . , âi, . . . ,an)

+
∑
i<j

(−1)i+jµ(a−1; [ai,aj]∗,a0, . . . , âi, . . . , âj, . . . ,an)

+ (−1)n−1

(n−1)! ϵab1...bn−1

(
Φ̃([a−1,y

a]∗;a0,a1 . . . ,an,y
b1 , . . . ,ybn−1)

+
n∑

k=0

(−1)k Φ̃(a−1; [ak,y
a]∗,a0, . . . , âk, . . . ,an,y

b1 , . . . ,ybn−1)
)
,

(C.12)

26 The map µ also vanishes identically if at least one of its n last arguments depends only on the y variables.
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which, upon using [−,ya]∗ =− ∂
∂pa

and the fact that the latter can be factored out of the expres-

sion of Φ̃, reproduces (C.9).

In plain words, µ is a Chevalley–Eilenberg cocycle, up to a total derivative in p. Moreover,
this property implies that the extension of µ to forms on any manifold taking values in the
Weyl algebra can be used to define a trace on the algebra of covariantly constant sections with
respect to any given flat connection A.

Corollary C.3. Let X be a smooth manifold, and A a flat connection on its Weyl bundle, asso-
ciated to T∗X . Then, for any pair of covariantly constant sections F,G with respect to A, the
Ω(X )-linear extension of µ verifies the cyclicity condition

µ([F,G]∗|A, . . . ,A) ∝ nℏdµ(F|G,A, . . . ,A)+ ∂
∂pa
φa(F|G,A, . . . ,A) , (C.13)

as well as the gauge invariance condition

δξµ(F|A, . . . ,A) ∝ ndµ(F|ξ,A, . . . ,A)+ ∂
∂pa
φa(F|ξ,A, . . . ,A) , (C.14)

for any gauge parameter ξ (i.e. any section of the Weyl bundle, not necessarily covariantly
constant).

Proof. The proof is almost identical to that of [50, proposition 4.2]. For the sakes of com-
pleteness, let us repeat it.

First, let us use the almost-cocycle condition (C.9) verified by µ to write

µ([F,G]∗|A, . . . ,A) = n
(
µ([F,A]∗|G,A, . . . ,A)+µ(F|[G,A]∗,A, . . . ,A)

− (n−1)
2 µ(F|[A,A]∗,G,A, . . . ,A)

)
+ ∂

∂pa
φa(F|G,A, . . . ,A)

(C.15)

where the dimension-dependent coefficients appear simply for combinatorial reason (several
terms are identical since many of the arguments of µ are the same). Using the flatness of A and
covariant constancy of F and G, we can replace all brackets by a differential term,

µ([F,G]∗|A, . . . ,A) = nℏ
(
µ(dF|G,A, . . . ,A)+µ(F|dG,A, . . . ,A)

+ (n− 1)µ(F|G,dA, . . . ,A)
)
+ ∂

∂pa
φa(F|G,A, . . . ,A) ,

(C.16)

which reproduces the exact term in (C.13).
Similarly, the gauge variation

δξµ(F|A, . . . ,A) = 1
ℏ µ([F, ξ]∗|A, . . . ,A)+ nµ(F|dξ+ 1

ℏ [A, ξ]∗,A, . . . ,A)(C.17)

can be recast as

δξµ(F|A, . . . ,A) = n
(
µ(dF|ξ,A, . . . ,A)+ 1

ℏ µ(F|[ξ,A]∗,A, . . . ,A)

+ (n− 1)µ(F|ξ,dA, . . . ,A)+µ(F|dξ+ 1
ℏ [A, ξ]∗,A, . . . ,A)

)
+ ∂

∂pa
φa(F|ξ,A, . . . ,A) ,

(C.18)

upon using the almost-cocycle condition on the first term of equation (C.17), as well as the
fact that A is flat and F covariantly constant. The two terms containing a commutator [A, ξ]∗
cancel one another, and the remaining terms add up to give (C.14).
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Appendix D. Quantization of the cotangent bundle

D.1. From off-shell Segal to the quantization of the cotangent bundle

The off-shell Segal system presented in section 3.1 can be interpreted as a deformation quant-
ization of the cotangent bundle T∗X over a given manifold X , which we think of as spacetime
here. Indeed, recall that the algebra of functions on the cotangent bundle which are polynomial
in the momenta (fiber coordinates) is isomorphic to the algebra of symbols S(X ) of differen-
tial operators on X . Finding such an isomorphism (of vector spaces) between the space of
symbols and the space of differential operators D(X ) on X ,

σ :D(X )
∼−−−−→S(X ) , (D.1)

amounts to a quantization of the cotangent bundle (modulo some additional conditions, see
e.g. [82] for more details and recent application in the context of HS gravity) in the sense that
it allows one to define a star product on symbols, and hence on the algebra of polynomial
functions on T∗X , via the composition of differential operators, i.e.

σ(D̂1) ⋆ σ(D̂2) = σ(D̂1 ◦ D̂2) , (D.2)

for any differential operators D̂1, D̂2 ∈ D(X ). For instance, in the case of flat space X = Rn,
this is nothing but an ordering prescription (e.g. Weyl or normal ordering). The connection 1-
formA in the off-shell Segal system allows to define such an isomorphism as follows: assuming
that A is of the form

A= dxµ eaµ pa+ · · · (D.3)

where xµ are coordinates on X , the dots denote terms of higher orders in y and p, and eaµ is
invertible, then there is a bijection between differential operators on X and sections of the
bundle of Weyl algebra (in the variables (ya,pa) with a= 1, . . . ,dimX = n) over the manifold
X , which are annihilated by

D := d+ 1
ℏ [A,−]∗ , (D.4)

where d denotes the de Rham differential on X and ∗ the fiberwise Moyal–Weyl product
(meaning, between the (ya,pa) variables). Indeed, the equation Df(x,p;y) = 0, can be solved
order by order in y (and ℏ) thanks to the fact that eaµ has an inverse (see appendix E for more
details). In other words, the y-dependency of any function annihilated by D can be uniquely
reconstructed, so that

Df = 0 ⇔ f = τ( f0) , f0(x,p) = f(x,p;0) , (D.5)

where τ is a bijection (whose inverse consists in setting y= 0). Now on the one hand, functions
depending only on xµ and pa are nothing but polynomial functions on the cotangent bundle,
expressed in a coordinate system wherein the tautological (or Liouville) 1-form reads ϑ=
dxµ eaµ pa. On the other hand, such functions identify with symbols of fiberwise differential
operators, by which we mean differential operators in the y-variables, whose coefficients are
smooth functions onX and formal series in y. As it turns out, Dolgushev showed that the space
of such symbols, which are annihilated by the differential D, are in bijection with differential
operators on X [98, theorem 3 and proposition 1]. In other words, the connection 1-form
in the off-shell Segal system allows us to obtain a quantization of the cotangent bundle, by
establishing an isomorphism between functions on T∗X (which are polynomial in momenta),
and differential operators.

Considering that the cotangent bundle T∗X of any manifold X is symplectic, one can also
quantize it using Fedosov’s method [46]. As it turns out, the question of the precise relation
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between these two approaches was studied by Fedosov himself in [132]. The result is that,
given a quantization of the cotangent bundle in the sense described in the previous paragraphs,
one can build a Fedosov quantization of the cotangent bundle T∗X as follows.

• First, one should define a Fedosov connection on the Weyl algebra bundle over the sym-
plectic manifold T∗X . It therefore defines a differential on the space of forms valued inA2n

that should take the form

D̃= d̃+ [Ã,−]∗ , (D.6)

where d̃ denotes the de Rham differential on T∗X and Ã is a A2n-valued connection 1-form
on T∗X , whose pieces linear in y and p read

Ã=−dπa ya+ dxµ eaµ pa+ · · · , (D.7)

in a patch with coordinates (xµ,πa) of the cotangent bundle. Such a 1-form can be construc-
ted from the 1-form in the parent Segal system, via

Ã(x,π;y,p) =−dπa ya+A ′ , A ′ := A(x;y,p+π) . (D.8)

The expression (D.6) does square to zero since

d̃Ã+ 1
2 [Ã, Ã]∗ = 0 ⇔

{
0= ( ∂

∂πa
− ∂

∂pa
)A ′

µ ,

0= dA ′ + 1
2 [A

′,A ′]∗ .
(D.9)

The first equation is satisfied as a consequence of the particular dependency of A′ in p and
π, and the second one by virtue of the fact that both the action of the de Rham differential
and the Moyal–Weyl star product commute with translation in p27, and therefore this second
equation follows from flatness of A. This is also consistent with the fact that the Fedosov
connection Ã leads to a quantization of the cotangent bundle equipped with its canonical
symplectic form d̃(eaπa). Indeed, adding the central term−eaπa to Ã results in the minimal
Fedosov connection whose curvature is d̃(eaπa), in accordance with the standard Fedosov
quantization.

• Second, one should find covariantly constant sections of this differential D̃, i.e. 0-forms F̃
such that

D̃F̃= 0 ⇔

{
0=

(
∂

∂πa
− ∂

∂pa

)
F̃ ,

0= dF̃+ [A ′, F̃]∗ ,
(D.10)

where the above equation has been split into two according to the natural basis (dxµ,dπa)
of one-forms on T∗X . The first equation is simplify solved by

F̃(x,π;y,p) = F(x;y,p+π) , (D.11)

and hence the second equation becomes equivalent to DF= 0.

27 In fact, one can characterize the Moyal–Weyl star product as the unique star product on R2n which is isp(2n,R)-
equivariant [133].
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In summary, the parent Segal system can be extended into a Fedosov differential and a cov-
ariantly constant section of the Weyl bundle over T∗X .

D.2. Traces in Fedosov’s quantization

As previously recalled, the basic principle of Fedosov’s quantization is to establish an iso-
morphism, usually denoted τ , between functions on a symplectic manifold (M,ω) and sections
of the Weyl bundle which are annihilated by the Fedosov differential DM := dM+ [AM,−]∗,
where dM denotes the de Rham differential onM, so as to define the star product ⋆ on C∞(M)
as the pullback of the fiberwise Moyal–Weyl product ∗ of the corresponding sections of the
Weyl bundle (under the action of τ ). In other words,

τ :
(
C∞(M),⋆

) ∼−−−−→
(
H0(DM),∗

)
, (D.12)

is an isomorphism of associative algebras. This allows one to define a trace on
(
C∞(M),⋆

)
by

using structures defined on theWeyl bundle, namely the Fedosov differential and a Hochschild
cocycle of the Weyl algebra. More precisely, given a function f ∈ C∞(M), its trace is given by

TrAM( f) :=
ˆ
M
Φ(τ( f);AM, . . . ,AM) , (D.13)

where

Φ :A2n⊗ ·· ·⊗A2n︸ ︷︷ ︸
2n times

→A∗
2n , (D.14)

the representative of the Hochschild cohomology ofA2n with values in its dualA∗
2n derived in

[50]. That this (multi-linear) map is a cocycle means that it verifies

0=Φ( f ∗ a0;a1, . . . ,a2n)+
2n∑
k=1

(−1)kΦ(f;a0, . . . ,ak−1 ∗ ak, . . . ,a2n)−Φ(a2n ∗ f;a0, . . . ,a2n−1) ,

(D.15)

for any a0, . . . ,a2n, f ∈ A2n. Antisymmetrizing this identity in the ai arguments yields28,

0=
∑

σ∈S2n+1

(−1)σ
(
Φ([f,aσ0 ]∗;aσ1 , . . . ,aσ2n)− 1

2 Φ( f; [aσ0 ,aσ1 ]∗, . . . ,aσ2n)
)
, (D.16)

which can be re-written as

0=

2n∑
i=0

(−1)iΦ([f,ai]∗;a0, . . . , âi, . . . ,a2n) (D.17)

+
∑
i<j

(−1)i+jΦ( f; [ai,aj]∗,a0, . . . , âi, . . . , âj, . . . ,a2n) , (D.18)

where hats denote the omission of the arguments, and with the understanding that theΦ appear-
ing in this formula is the antisymmetric part in the last 2n arguments of the original cocycle.
Using the above identity, and the fact that

dMAM+ 1
2 [AM,AM]∗ = 0 , DMF= 0=DMG , (D.19)

28 Note that this operation corresponds to producing a Chevalley–Eilenberg cocycle for the commutator algebra out
of the original Hochschild cocycle.
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for F= τ( f) and G= τ(g) the lifts of a pair of functions f,g ∈ C∞(M), one can check that [50,
proposition 4.2]

Φ
(
[F,G]∗;AM, . . . ,AM

)
= dMΦ

(
F;G,AM, . . . ,AM

)
, (D.20)

and

δξΦ(F;AM, . . . ,AM) = dMΦ
(
F;ξ,AM, . . . ,AM

)
, (D.21)

for any section ξ of the Weyl bundle. In plain words, the obstruction for Φ(τ(−);AM, . . . ,AM)
to vanish on ⋆-commutator and to be gauge-invariant is exact, which implies that for com-
pactly supported functions, the operation (D.13) does define a trace, and that this definition is
independent of the choice of Fedosov differential DM.

Appendix E. Flat connection in the Weyl algebra

In this appendix, we give a proof of proposition 4.1, as well as some details about the con-
struction of covariantly constant sections. In the rest of this section, deg(−) will refer to the
Fedosov degree (4.2) on the Weyl algebra.

Proof of proposition 4.1. Let theWeyl bundle connection be given byD = d+ 1
ℏ [ϖ,−]∗, where

ϖ = dxµ eaµ pa+ω , with ω :=
∑
n⩾2

ϖ(n) , deg(ϖ(n)) = n , (E.1)

with eaµ invertible, and decompose its curvature

R := dϖ + 1
2ℏ [ϖ,ϖ]∗ =

∑
n⩾1

R(n) , (E.2)

according to the Fedosov degree. Let us furthermore consider

A=ϖ +W , with W=
∑
n⩾2

W(n) , deg(W(n)) = n , (E.3)

whose curvature is given by

dA+ 1
2ℏ [A,A]∗ = R− δW+DωW+ 1

2ℏ [W,W]∗ , (E.4)

where

δ :=− 1
ℏ [ea pa,−]∗ = ea ∂

∂ya , Dω := d+ 1
ℏ [ω,−]∗ , (E.5)

are derivations of degree deg(δ) =−1 and deg(Dω)⩾0 (by which we mean thatDω maps elements
of degree k to elements of degree higher or equal to k). In fact, δ defines a differential on Ω(X ,Â2n)

since δ2 = 0. At order n, the flatness condition for A reads

δW(n+1) = R(n) +(DωW)(n) +
1
2ℏ

n∑
k=2

[W(k),W(n+2−k)]∗ , (E.6)

and in particular, the right hand side of the above equation only contains the components W(k)

with k⩽n. Since the right hand side is δ-closed by virtue of the fact that (−δ+Dω)R= 0, which
corresponds to the Bianchi identity of the connection D, and [W, [W,W]∗]∗ = 0 (Jacobi identity),
the above equation can be read as the condition that the right hand side is δ-exact. In other words,
assuming that there existsW(k) with 1⩽k⩽n such that the curvature of A vanishes in degrees lower
or equal to n− 1, then the existence of W(n+1) ensuring the vanishing of the curvature of A up to
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degree n is encoded in the cohomology group of δ in (form) degree 1. The contracting homotopy
h, introduced in (4.7), can therefore be used to solve W(n+1) in terms of the lower components,
namely

W(n+1) = h

(
R(n) +(DωW)(n) +

1
2ℏ

n∑
k=2

[W(k),W(n+2−k)]∗

)
, (E.7)

which solves (E.6) by virtue of the fact that {h, δ}= 1 on A2n-valued 1-forms and h2 = 0, and
therefore uniquely specifies W in terms of the curvature of D.

Having solved for A, we can now solve for F in a similar manner. Indeed, the covariant constancy
condition reads

δF(n+1) = (DωF)(n) +
1
ℏ

n+2∑
k=2

[W(k),F(n+2−k)]∗ = 0 , (E.8)

at order n. Here again, one can use the contracting homotopy to express F(n+1) in terms of lower
order components, namely

F(n+1) = h

(
(DωF)(n) +

1
ℏ

n+2∑
k=2

[W(k),F(n+2−k)]∗

)
. (E.9)

Note that h(F) = 0 due to the fact that F is a 0-form.

This way of constructing a flat connection starting from a possibly curved one is a variation
on the Fedosov approach to the deformation quantization problem of symplectic manifold
[46], as explained in [40, appendix A] (see also [98]). By construction, the completion of
some possibly curved connection D into a flat connection A will only contain the curvature of
D, as well as covariant derivatives and contraction thereof.

Note that in the previous proof, we implicitly assumed that the connectionD has no degree-
0 piece, i.e. that ϖ does not contains a term a ∈ Ω1(X ), which lies in the center of the Weyl
algebra. If such a term is present, proposition 4.1 still holds due to the following line of argu-
ment. Since a has degree 0, its field strength da contributes to the curvature of the connection
ϖ = a+ ea pa+ω in degree 0 as well and hence requires the introduction of a term W(1) of
degree 1 inW to be compensated, i.e. δW(1) = da. This equation is solved byW(1) =−ea ∂aab yb,
and the obstruction to the flatness of the connection ϖ+W(1) is now of degree 2 and higher,
and the degree 1 piece of this connection defines a new differential

δ ′ :=− 1
ℏ e

a [pa− ∂aab y
b,−]∗ , (E.10)

with respect to which the condition that A=ϖ+W is flat reads as in (E.6) upon replacing δ

with δ ′. Consequently, the existence of W also boils down to a cohomology problem, i.e. it is
guaranteed provided that the cohomology of δ ′ is empty in form degree 1. As a matter of fact,
one can show that the cohomology of δ ′ is empty in form degree greater or equal to one29.

29 Let us start by looking for δ ′-cocycles, i.e. solutions to δ ′α= 0. This equation can be expanded with respect
to the degree in y as δα(k+1) + δaα(k) = 0, where δa :=

1
ℏ [ea∂aab yb,−]∗. Since δ and δa commute, δaα(k) is a

δ-cocycle and hence the existence of α(k+1) is ensured whenever α has form (strictly) positive form degree. This
shows existence of δ ′-cocycles in any positive form degree. Now given such a cocycle α, let us look for a solution
to δ ′β = α. Once again, expanding this equation with respect to the degree in y, one can see that it can be solved
iteratively by β(k+1) = h(α(k) + δaβ(k)).
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For the same reason, the lift of sections of S(TX ) to covariantly constant sections of the Weyl
bundle W(X ) also exists.

Let us note that elements of the Weyl algebra which are linear in p form a Lie subalgebra
under the star-commutator. In fact, the commutator of these elements reduces to the Poisson
bracket, i.e.

1
ℏ [f,g]∗ =

( ∂f
∂ya

∂g
∂pa

− ∂f
∂pa

∂g
∂ya
)
=: {f,g} , (E.11)

for f,g ∈ A2n linear in p30. Consequently, the completion of a connection ϖ which takes val-
ues in the subalgebra of elements linear in p will also share this property, since the recursive
procedure (E.7) will only produce terms taking values in this subalgebra.

Let us also remark that, if ϖ is linear in p, and hence so is A, then the highest power in p
contained in covariantly constant section F is the same as that of F(0). More precisely, if F(0) is
an homogeneous polynomial in p of degree s, then F is a polynomial in pwith terms of degrees
s, s− 2, s− 4, … [40, proposition A.2].

Appendix F. Flattening the HS frame

Here we give an alternative procedure of encoding the unconstrained CHS fields into the flat
connection A. In this context, it is convenient to employ an alternative degree:

deg(y) = 1 , deg(p) = 0 , deg(ℏ) = 1 , (F.1)

and expand A as A= A0 +A1 + · · · into the homogeneous components. We treat A0 =∑
s dx

µEb(s)µ pb(s) as the initial data and, as before, assume that the term linear in p in A0 is
invertible. In this setup, the role of δ is played by a new operator of degree −1:

δ ′ =−1
ℏ [A0, ·]∗ = δ+

∞∑
l=1

δl , (F.2)

where δl has the total homogeneity degree l in pa and ℏ. The standard homological algebra argu-
ment then shows that δ ′-cohomology is empty in the nonvanishing form-degree. Moreover, the
respective contracting homotopy operator can be chosen to have homogeneity 1 in ya31.

At degree 1, we take A1 = a1 +Γ, where Γ = dxµωµ
c
b y

bpc encodes coefficients of the bare
affine connection. The role of Γ is to maintain covariance of the procedure. Indeed, as we are
going to see, with this choice only covariant derivatives of the fields entering Eµ(p) enter the
construction. At degree zero, the equation dA+ 1

2ℏ [A,A]∗ = 0 implies

δ ′a1 =∇A0 ⇔ dA0 +
1
ℏ [A1,A0]∗ = 0 (F.3)

and can be interpreted as the fact that the HS frame A0 is covariantly constant with respect
to HS connection A1. Because A0 is y-independent, δ ′A0 = 0 so that the consistency condi-
tion δ ′∇A0 = 0 is fulfilled and hence a1 exists. Such a ‘connection’ A1 can be considered the
‘torsion-free’ HS connection. Note that to avoid the dependency on the arbitrary connection
Γ, one could take as Γ a Levi–Civita connection determined by the spin-2 frame eaµ and the
constant Minkowski metric ηab.

30 This subalgebra is often referred to as the algebra of formal vector fields. This algebra is a central piece of ‘formal
geometry’ [134, 135], and can be obtained as the prolongation (in the sense of Kobayashi [136]) of the inhomogeneous
general linear algebra igl(n,R).
31 This happens because δ has no cohomology in nonvanishing form-degree, while the complex is quasi-isomorphic
to (H•(δ),∆), where ∆ is a differential induces by δ ′ in H•(δ). Note, however, that contracting homotopy implies
inverting the HS frame and hence could result in elements which are nonpolynomial in pa.
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At degree 1, we have δ ′A2 = dA1 +
1
2ℏ [A1,A1]∗, The consistency condition again holds:

δ ′
[
dA1 +

1
2ℏ [A1,A1]∗

]
=−dδ ′A1 +

1
ℏ [dA0,A1]∗ +

1
ℏ [δ

′A1,A1]∗ = 0 , (F.4)

where we have made use of δ ′A1 = dA0, and hence A2 also exists.
One then proceeds by the standard induction. Let us recall how it goes. Introducing Ω=

ℏd+A, the zero-curvature condition is equivalent to [Ω,Ω]∗ = 0. At degree k, the equation
reads

δ ′Ak+1 +
1
2ℏ [Ωk,Ωk]∗|k = 0 , with Ωk := ℏd+

k∑
l=0

Al , (F.5)

where C|k denotes the degree k component of C, and it is assumed that the equation is already
solved to order k. The consistency condition δ ′([Ωk,Ωk]∗|k) = 0 is the degree k component of
the identity [Ωk, [Ωk,Ωk]∗]∗ = 0, where the induction assumption has been used. It is therefore
satisfied, which implies the existence of Ak+1. In other words, any A0 = dxµEµ(p) has a unique
(modulo gauge transformations) lift to A satisfying the flatness condition dA+ 1

2ℏ [A,A]∗ = 0.
It is natural to call dxµEµ(p) a HS frame-field.
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